Chapter 6

AMEREN SERVICES

1

.

, Į

T

Ĵ,

Ţ

Ţ

HYDROGEOLOGIC ASSESSMENT FINAL REPORT

HUTSONVILLE POWER STATION CRAWFORD COUNTY, ILLINOIS

PROJECT NO: 1375

Natural Resource Technology

TSD 000176

HUTSONVILLE POWER STATION HUTSONVILLE, ILLINOIS

HYDROGEOLOGIC ASSESSMENT FINAL REPORT

Project No: 1375

Prepared For:

Ameren Services One Ameren Plaza 1901 Chouteau Avenue St. Louis, Missouri

Prepared By:

Natural Resource Technology, Inc. 23713 W. Paul Road, Suite D Pewaukee, WI 53072

August 19, 1999

Fafalios, P.E.

Environmental Engineer

Bruce R. Hensel, P.G. Senior Hydrogeologist

23713 W. Paul Road, Unit D • Pewaukee, WI 53072 • (262) 523-9000 • Fax (262) 523-9001 www.naturalrt.com

TABLE OF CONTENTS

ļi

j,

| | |

. [· .

. i

، با با

ł

ļ

ļ

ŀ

EXECUTIVE SUMMARY ES-1				
1	INTRODUCTION1-1			
2	FIELD PROCEDURES			
	2.1 Direct-Push Sampling			
	2.1.1 Laboratory Samples2-22.1.2 Probe Hole Abandonment2-3			
	2.2 Installation of New Monitoring Wells2-3			
	2.2.1 Rationale 2-3 2.2.2 Drilling 2-4 2.2.3 Construction 2-4 2.2.4 Development 2-5 2.2.5 Hydraulic Testing 2-6			
	2.3 Decontamination			
3	RESULTS OF FIELD INVESTIGATION			
	3.1 Site Geology			
	3.1.1 Stratigraphic Units3-13.1.2 Subsurface Ash/Coal Distribution3-23.1.3 Bedrock Topography3-4			
	3.2 Site Hydrogeology 3-5			
	3.2.1 Hydraulic Conductivity3-53.2.2 Groundwater Flow3-53.2.3 Elevation of Groundwater Relative to Ash3-7			
	3.3 Nearby Groundwater Users			

4	GROUNDWATER QUALITY IN DIRECT-PUSH SAMPLES	4-1
	4.1 Parameters of Concern	
	4.2 Direct-Push Leachate Samples	
	4.3 Direct-Push Groundwater Samples	
5	GROUNDWATER QUALITY IN MONITORING WELLS	5-1
	5.1 Parameters of Concern	
	5.2 Groundwater Results	
	5.3 Surface Water Results	
	5.4 Source Area and Receptor Analysis	5-4
6	CONCLUSIONS	6-1

FIGURES

1

;

Figure 1:	Site Plan (1375-1-B01)
Figure 2:	Elevation of well screens, ground surface, bedrock surface, and groundwater
Figure 3:	Geologic cross-sections (1375-1-B12)
Figure 4:	Bedrock elevation contours (1375-1-B11)
Figure 5:	Water table elevation contours, November 16-18, 1998 (1375-1-B09)
Figure 6:	Water table elevation contours, April 29-30, 1999 (1375-1-B10)
Figure 7:	Historical groundwater elevations at MW-2 and MW-3
Figure 8:	Historical groundwater elevations at nested wells (MW-3/3D, MW-7/7D,
	MW-10/10D)
Figure 9:	Site location map (1375-A01)
Figure 10:	Total boron in groundwater (1375-1-B02)
Figure 11:	Historical total boron concentrations in MW-2 and MW-3
Figure 12:	Sulfate in groundwater (1375-1-B07)
Figure 13:	Total maganese in groundwater (1375-1-B03)
Figure 14:	Total iron in groundwater (1375-1-B05)
Figure 15:	Total nickel in groundwater (1375-1-B04)
Figure 16:	Field pH in groundwater (1375-1-B06)
Figure 17:	Total dissolved solids in groundwater (1375-1-B08)

TABLES

ī,

I

L

ļi

1

.

ĺ

1.1

:

Table 1:	Direct-Push Sampling Data
Table 2:	Water Sample Parameters and Analytical Methods
Table 3:	Monitoring Well Locations, Elevations, Depth to Bedrock, and Screened Formation
Table 4:	Monitoring Well Completion Details
Table 5:	Monitoring Well Slug Test Results
Table 6:	Leachate and Groundwater Concentration Results from Direct-Push Samples Compared to Ash and Coal Thickness
Table 7:	Groundwater Concentration Results from Monitoring Wells Compared to Ash and Coal Thickness
Table 8:	Source Area Analysis

APPENDICES

Appendix A:	Boring/Monitoring Well Construction Logs
Appendix B:	Slug-Test Data
Appendix C:	Direct-Push Water Quality Results
Appendix D:	Water Well Logs

EXECUTIVE SUMMARY

|; |;

k

This hydrogeologic assessment describes hydrogeology, groundwater flow, and groundwater quality near the AmerenCIPS Hutsonville Power Station ash impoundments. There are two impoundments at this site, an unlined impoundment that has been in operation since 1968 and a lined impoundment that has been in operation since 1986. This assessment was prompted by concentrations of boron and sulfate at several monitoring wells near these impoundments that exceeded Illinois Class I groundwater standards. Boron and sulfate are indicator parameters for coal ash leachate in groundwater.

Two rounds of field work were performed. From August 25-28, 1998, soil, leachate, and groundwater samples were collected at 23 locations across the site using direct-push sampling methods. In addition, two temporary well points were installed and sampled in the lined ash impoundment. From October 5-10, 1998, seven monitoring wells were installed to augment the existing network of nine monitoring wells.

Results of Field Investigation

Coal ash is found predominantly in three areas of the plant site: the two impoundments and an ash laydown area that is between the two impoundments. Ash thickness in the unlined impoundment ranged from about 12 feet at the north end of the impoundment to 31 feet in the central portion of the impoundment. Ash thickness in the laydown area is as much as 12 feet. There is also a coal pile near the impoundments, and some boreholes outside the coal pile area encountered thin seams of spilled coal near the surface.

The stratigraphy encountered at the Hutsonville Power Plant consisted of a relatively thin veneer of unlithified deposits overlying bedrock. Over most of the site, the unlithified units are sandy and less than 20 feet thick; however, thickness abruptly increases to at least 90 feet near the Wabash River, where there is a bedrock valley. Silt was found in the upper portion of the

bedrock valley, and sand and gravel occurs in the lower portions of the valley. The underlying bedrock is comprised mainly of Pennsylvanian-age sandstone and shale.

The groundwater surface throughout most of the plant site occurs within sand and gravel. However, near the river, it occurs within alluvial silt and clay deposits, and near the southern portion of the unlined impoundment the groundwater surface occurs within ash. Groundwater flow through the sand is east toward the Wabash River. Horizontal groundwater flow velocity varies with hydraulic gradient and hydraulic conductivity, and was estimated to range from 150 ft/yr to 240 ft/yr in the sand and gravel deposits.

Groundwater and Leachate Quality

ł

The Hutsonville work plan identified boron, sulfate, manganese, pH, and TDS as parameters of concern (POCs) because they had concentrations in groundwater near the impoundments that exceeded Illinois Class I groundwater standards. Boron and sulfate are indicator parameters of coal ash leachate, while the other POCs are not necessarily indicators. Iron and nickel were also included in this assessment because these parameters sometimes have high concentrations in groundwater near coal piles.

Most ash leachate samples had boron, sulfate, and TDS concentrations that exceeded the Class I groundwater standard. Manganese exceeded the standard in leachate from the unlined ash impoundment and from the former ash laydown area, but not in the lined ash impoundment (lowest concentrations on site); thereby exhibiting its unreliability as an ash indicator parameter. Iron was below the standard in all leachate samples from the impoundments, but exceeded the standard in the leachate sample from the former ash laydown area. Nickel was below the standard in all leachate samples. The pH of the leachate samples was neutral, except in the lined impoundment where it was alkaline.

Direct-push groundwater samples showed concentrations of boron, manganese, sulfate, and TDS higher than Class I standards in most samples near the impoundments and the ash laydown area.

Groundwater samples extracted near the coal pile typically had high concentrations, relative to standards, of iron, nickel, sulfate, TDS, and manganese. Acidic pH values were recorded in groundwater samples throughout the coal pile area, and values were typically lower than the lower Class I standard. There was only one standard exceedance (manganese) in groundwater sampled south of the site.

Groundwater samples from several monitoring wells near the ash laydown area and unlined ash impoundment had high concentrations, relative to Class I standards, of boron, manganese, sulfate, and TDS. There were also two wells with high nickel and low pH, and both of these wells were in areas where coal had been spilled.

Overall, there is a correlation between groundwater quality and potential leachate sources. Groundwater near the unlined coal ash impoundment and ash laydown area had high boron and sulfate concentrations. Groundwater near the coal pile and coal spill areas typically had high nickel, iron, and sulfate concentrations. Groundwater near the coal pile also had very low pH.

Conclusions

h

h

Groundwater samples from some on-site monitoring wells and direct-push locations had concentrations of boron, manganese, sulfate, TDS, iron, and nickel higher than Class I standards. High iron and nickel concentrations were found in locations where coal was present. These observations indicated two general sources for groundwater quality impacts: 1) the coal pile and coal spill areas, and 2) the ash laydown area and unlined ash impoundment.

There is no evidence that iron and nickel from the coal pile and coal spill areas is migrating beyond those areas. However, boron and sulfate are migrating east toward the Wabash River.

There are no groundwater extraction wells in the shallow sediments between the unlined ash impoundment and the Wabash River. There are four extraction wells within ½ mile of the site, all finished in deep sand and gravel in the Wabash River valley. Two wells are directly east of

hutsonville hydrogeologic assessment.doc

Natural Resource Technology

TSD 000183

the unlined impoundment and are used for plant water, and two wells are southeast of the impoundment and used for irrigation water. Groundwater quality data from monitoring well MW-7D, which is directly downgradient of the unlined ash impoundment and is the deepest onsite monitoring well in the Wabash River valley, indicates no evidence of ash impoundment or coal pile impacts at that depth.

hutsonville hydrogeologic assessment.doc

ł

1

|; |;

ŀ.

į. I

1

1 INTRODUCTION

AmerenCIPS operates the Hutsonville Power Station in Crawford County Illinois. The Power Station is located on the west bank of the Wabash River between the towns of Hutsonville and York (SW ¼, Section 17, Township 8N, Range 11W). The coal-fired power plant has been in operation since the 1940's. There are currently two units operating at the plant, completed in 1953 (unit 3) and 1954 (unit 4), with a combined generating capacity of 156 MW. Fly ash from the operating units is collected by an electrostatic precipitator and sluiced to a lined ash impoundment. Bottom ash is sluiced to a separate pond and eventually recycled. Sluice water from both the bottom ash pond and lined fly ash impoundment is routed through an unlined ash impoundment, before discharge to the Wabash River via an NPDES permitted outfall. The lined ash impoundment was constructed in 1986, and has an area of about 12 acres. The unlined impoundment was constructed in 1968, and has an area of about 17 acres.

Groundwater quality has been monitored at this facility since 1984. Concentrations of boron and sulfate at several monitoring wells exceed Illinois Class I groundwater standards. Boron and sulfate are indicator parameters for coal ash leachate in groundwater. In response to these findings, Ameren Services contracted Science & Technology Management Inc. (STMI) and Natural Resource Technology Inc. (NRT) to perform a hydrogeologic assessment that will characterize hydrogeology, groundwater flow, and groundwater quality at this facility.¹

hutsonville hydrogeologic assessment.doc

¹ Science & Technology Management Inc. (STMI) ceased operations on January 31, 1999. At that time, the STMI project manager overseeing this investigation took a position at Natural Resource Technology, Inc. (NRT). NRT developed this report based on information in STMI's files and on the project managers past involvement with this project.

2 FIELD PROCEDURES

Two rounds of field work were scheduled and completed. From August 25-28, 1998, soil and groundwater samples were collected at 23 locations across the site (Figure 1) using direct-push sampling methods. In addition, two temporary well points were installed and sampled in the lined ash impoundment. From October 5-10, 1998, seven monitoring wells were installed to augment the existing network of nine monitoring wells. The monitoring wells were installed in a manner consistent with specifications in Section 811.318(d) of the Illinois Waste Management Rules. In addition, hydraulic conductivity tests were performed on selected new and existing monitoring wells. Drilling was performed by American Environmental Corporation of Indianapolis, IN, under subcontract to STMI. Field geology and hydraulic testing were performed by STMI. Water quality analyses were performed by AmerenCIPS central laboratory.

2.1 Direct-Push Sampling

--A-truck-mounted,-GeoProbe[™]-direct-push sampling system was used to collect coal ash, soil, and groundwater samples from 23 locations across the Hutsonville plant site (Figure 1). The direct-push sampling was conducted to survey groundwater quality around the site, to estimate the depth of ash and obtain leachate samples in the old impoundment, to log the type and extent of geologic and fill materials, and to estimate depth to bedrock. Table 1 lists direct-push sampling data; boring logs are provided in Appendix A.

A Macro-Core® Soil Sampler, consisting of a 52-inch long by 2.2-inch O.D. split-barrel sampler fitted with a replaceable plastic liner, was used to collect a continuous sequence of soil and ash core at each probe hole location. The probe holes were advanced to bedrock, typically encountered at depths of 9.5 feet to 36.5 feet. Bedrock was not encountered at locations GP-14 (total depth 40 feet) and GP-19 (total depth 32 feet) southeast of the plant site. After a probe hole was geologically logged, a Screen Point 15 Groundwater Sampler® was connected to the direct-push rod and driven into the ground to the target sampling depth. The water sample was

hutsonville hydrogeologic assessment.doc

collected by retracting the rod several feet to expose the sampler's stainless steel screen, then inserting a section of disposable polyethylene tubing and slowly extracting the sample using a peristaltic pump connected to the tubing.

Water samples were not collected at locations GP-1, GP-19, and GP-22 because of low water yield from the screened materials. No water sample was collected at probe hole GP-8, which was used only to log geology near the southwest corner of the lined ash impoundment.

Concurrent with direct-push sampling, two temporary well points were installed at depths of seven to eight feet in the lined ash impoundment to collect leachate samples (Figure 1, LP locations). Each well point was constructed of 1.25-inch I.D., polyvinyl chloride (PVC) pipe flush-threaded to a four-foot long section of 0.01-inch factory-slotted PVC screen covered by a filter sock. Because the lined impoundment was too soft for truck access, the well points were hand-driven into the ash. The leachate samples were collected by hand pumping a section of disposable high-density polyethylene (HDPE) tubing connected to a stainless steel foot-valve. After sampling, the temporary well points were completely removed and the holes were allowed to collapse:

2.1.1 Laboratory Samples

All direct-push water samples were collected in laboratory transfer containers and transported to the Hutsonville plant's on-site laboratory for measurement of temperature, electrical conductivity, pH, dissolved oxygen, and oxidation-reduction potential. Samples for metals analysis were then passed through a 0.45 micron cellulose nitrate filter membrane (one per sample) into 250-ml polyethylene containers and preserved with concentrated nitric acid. The remaining sample volume was transferred into 1000-ml polyethylene containers (without preservatives). All sample aliquots were stored at a temperature below 39°F (4°C) prior to analysis at AmerenCIPS laboratory. Parameters analyzed and analytical methods used are listed in Table 2.

hutsonville hydrogeologic assessment.doc

2-2

2.1.2 Probe Hole Abandonment

Upon completion of sampling, probe holes that encountered coal or coal ash were backfilled with bentonite grout that was injected as the probe or sampler was withdrawn, while probe holes that did not encounter ash were backfilled with granular bentonite. Pump tubing was discarded after collection of each water sample and all reusable direct-push sampling equipment was decontaminated to prevent cross-contamination between sampling locations.

2.2 Installation of New Monitoring Wells

2.2.1 Rationale

ŗ

Seven new groundwater monitoring wells were installed at locations determined after analysis of previous groundwater sampling and the direct-push sampling. Well location, elevation, and completion details are listed in Tables 3 and 4. Boring logs and well completion reports are provided in Appendix A.

Four shallow wells were installed. One shallow well (MW-10) was installed to provide additional background groundwater quality data. Three shallow wells (MW-11, MW-12, and MW-13) were installed to characterize aquifer properties and groundwater flow at the site, and to delineate the extent of groundwater impacts associated with the ash impoundments. Wells MW-10, MW-12, and MW-13 were screened predominantly in unlithified materials, although MW-10 extended into the very shallow bedrock (Figure 2). Shallow monitoring well MW-11 was screened mostly within shallow bedrock, where the water table was encountered.

Three deep wells were installed. Deep well MW-7D was nested with existing well MW-7 to evaluate the vertical groundwater quality distribution and vertical flow conditions between the unlined ash impoundment and the Wabash River. Wells MW-3D and MW-10D were installed completely within bedrock to measure hydraulic properties and groundwater quality in the sandstone. The two wells were nested with existing shallow wells to determine vertical gradient

hutsonville hydrogeologic assessment.doc

between the sandstone and the overlying unlithified sediments, and to evaluate whether the sandstone is a potential pathway for solute transport.

2.2.2 Drilling

1.

Ľ

þ,

ľ

i.

!

A truck-mounted drill rig with 4¼-inch inside diameter (I.D.) hollow-stem augers was used to advance eight-inch diameter borings into the unlithified materials. Hollow-stem augers were also used to advance the boreholes for MW-3D, MW-10/10D, and MW-11 into bedrock. At MW-3D, the augers were used to drill the upper five feet of bedrock. A rotary air-hammer was then used to extend the bedrock borehole, at a four-inch diameter, to the depth of completion. At MW-10D, fine-grained materials in the bedrock caused the rotary air-hammer to bind internally; therefore, the augers were used to advance the borehole until bedrock composition halted further augering.

During drilling, the unlithified materials were sampled with a split-spoon and described in the field by STMI's geologist. The split-spoon samples were collected at five-foot intervals in previously investigated areas (near existing wells or direct-push borings) and were collected at two-foot intervals in newly drilled areas. Bedrock was characterized by examining drill cuttings.

2.2.3 Construction

All new well boreholes were drilled to their intended screen depths – except MW-7D, which was drilled five feet deeper than originally proposed to provide 15 feet of vertical offset from nested well MW-7. The new monitoring wells were constructed with two-inch I.D., schedule 40 PVC pipe flush-threaded to a section of 0.01-inch, factory-slotted PVC screen. The four shallow wells, which were screened across the water table, were constructed with either five-foot or tenfoot screens, depending on water table and bedrock depths. The deep monitoring wells were constructed with five-foot screens.

From bottom to top, the annulus for wells MW-3D, MW-10D, MW-12, and MW-13 was filled with: 1) filter pack consisting of uniform silica (#5) sand to at least one-half foot above the

screen; 2) about one to three feet of fine (#7) sand; 3) about one foot of bentonite chips; and 4) a Portland cement-bentonite (5:1 weight ratio) grout mixture to near ground surface. Wells MW-10 and MW-11 were completed in a similar manner, except that fine sand was not used in order to maximize the annular (bentonite) seal thickness. Conversely, because of the depth of water in the MW-7D borehole, three feet of fine sand was installed (in lieu of bentonite chips) to separate the filter pack and grout seal. The bentonite chips had a tendency to swell and bridge inside the auger instead of settling to the top of the filter pack.

The grout was pumped into the boreholes, using a tremie hose inserted to the base of the hollowstem augers. The tremie hose was then removed from the augers, and the augers were gradually withdrawn from the borehole, allowing the grout to settle. The grout was brought up to a depth of three feet to allow for construction of concrete well pads, or up to the ground surface at shallow well locations to maximize the annular seal.

After grouting, all of the new monitoring wells were finished with a stick-up style, locking steel well protector, surrounded by a set of two to three steel bumper posts for additional protection. The steel protectors for MW-3D, MW-7D, and MW-13 were set in three feet of concrete, and the protectors for the other four wells were set into the bentonite-cement grout that was brought up to the ground surface and topped with native soil.

2.2.4 Development

New wells were developed to remove sediment from within the wells and to restore the natural flow of groundwater around the wells. Except for MW-11, development was accomplished using a surge and pump technique (using a Geosquirt[™] pump) until extracted water achieved visual clarity and at least 1.5 borehole volumes (defined as the volume of water in the well and filter pack) were removed (Table 4). Monitoring well MW-11 readily bailed dry and continued to produce turbid, silty water after removal of 22 gallons of water (2.7 borehole volumes) over a two-day period. The well borehole was augered into sandstone bedrock that has a high silt/fine

hutsonville hydrogeologic assessment.doc

sand content, and substantial amounts of these materials may continue to pass through the filter pack.

2.2.5 Hydraulic Testing

٦

F

Single well recovery tests were performed per STMI standard operating procedure (see Hutsonville Work Plan, STMI/249/98-01) using a five-foot long by one-inch diameter solid PVC slug, which has a displacement volume of 0.027 ft³ (0.20 gallons). An In-Situ TrollTM SP4000 pressure transducer with on-board datalogger was used to monitor groundwater levels during the testing. The tests were programmed utilizing a portable PC loaded with software designed for the TrollTM unit. After measuring static water level, the TrollTM was inserted into the well to approximately one foot above the bottom, and the water level was allowed to return to static level.

For wells with screen and filter pack completely below the water table, the Troll[™] was activated from a portable PC and the PVC slug was quickly lowered below the water level in the well. For wells screened across the water table, the slug was lowered below the water level at the same time the Troll[™] was positioned. After the water level stabilized, the test was initiated and the slug was quickly removed from the water.

The tests were manually terminated when a check of water levels, via the Troll^{**} software, indicated that recovery was at least 90 percent complete. Data were then downloaded to the portable PC for analysis using commercial aquifer test analysis software.

2.3 Decontamination

The GeoProbe[™] truck and the drill rig arrived at the site in visibly clean condition. The drilling tools, rods, augers, and sampling equipment were steam-cleaned before use at the site, between drilling/sampling locations, and before leaving the site. The Screen Point 15® groundwater

sampler, and the Macro-Core® and split-spoon soil samplers were cleaned between individual samples.

The groundwater sampler was decontaminated by spraying with a solution of nitric acid and deionized water. Approximately one-half liter of solution was used after each sample collection, followed by a spray rinse using approximately one liter of deionized water. The nitric acid solution and deionized water were provided by the plant's on-site laboratory.

Soil samplers were decontaminated by washing with an $Alconox^{m}$ -water solution and then rinsing with clean water. Water used during both the direct-push sampling and monitoring well installation activities was collected from a potable water faucet east of the coal crusher house.

2.4 Waste Handling

Ł

Auger cuttings from on-site boreholes were spread on the ground surface, including ash cuttings brought up in ash disposal areas. Auger-cuttings from the two upgradient, off-site boreholes, which_did_not contain ash, were spread on the ground_surface in a way that minimized visual impact and would allow reestablishment of native vegetation. Disposable soil and groundwater sampling materials (e.g., water sample tubing, soil core liners) were discarded in the plant's waste dumpsters.

3 RESULTS OF FIELD INVESTIGATION

3.1 Site Geology

::;;

ŗ

ļ

In order to illustrate the spatial variability of the unlithified deposits and bedrock, three geologic cross-sections were constructed (Figure 3). Section A-A' and the northern one-half of Section B-B' are oriented roughly parallel to groundwater flow; while the southern (off-site) section of Section B-B' is oriented perpendicular to flow to the south of the plant site. Section C-C' is oriented along the river and perpendicular to groundwater flow.

3.1.1 Stratigraphic Units

The stratigraphy of natural materials encountered at the Hutsonville Power Plant consists of a relatively thin veneer of unlithified deposits overlying bedrock. Three textural units were identified within the unlithified deposits: 1) river-laid silt, clay, and fine-grained sand, classified ...as Cahokia Alluvium; 2) poorly sorted_sand_and_gravel, deposited_by_glacial_meltwaters and classified as Henry Formation; and 3) a stiff to hard silt and clay diamicton unit. Across most of the plant site, the unlithified units are less than 20 feet thick; however, they abruptly increase to at least 90 feet thick near the Wabash River, where there is a bedrock valley (Sections A-A' and C-C'; Figure 3). The location of this bedrock valley was defined by monitoring well and direct-push boreholes in the southern portion of the site; however, it was not defined in the northern portion of the site where it probably occurs beneath the river, east of the plant buildings. The underlying bedrock is comprised mainly of Pennsylvanian-age sandstone and shale.

The Cahokia Alluvium is derived from eroded loess and till, and occurs in the flood plains and channels of modern rivers and streams (Berg and Kempton, 1987). Locally, the alluvium is found in the Wabash River bedrock valley and is composed of silt, clay, and clayey sand, with wood and shell fragments. Lenses of poorly sorted, silty sand and gravel occur locally within the

alluvium. In the study area, the unit is 0 to 15 feet thick beneath portions of the plant site and abruptly thickens to at least 25 feet near the Wabash River.

The Henry Formation is composed of glacial outwash sand and gravel and is locally the predominant unit in the upland areas upon which the plant and impoundments were constructed (Berg and Kempton, 1987). The Henry Formation sands are also found in the Wabash River bedrock valley where thickness ranges to at least 65 feet.

The diamicton was encountered in several isolated areas (MW-2, GP-13, and GP-20/21) in the southern portion of the study area (Sections A-A' and B-B'; Figure 3). The unit is stiff to hard, nonplastic to moderately plastic, and is at least five feet thick beneath the southern portion of the unlined ash impoundment. The unit was not encountered beneath the northern portion of the impoundment, where ash fill is underlain by bedrock or alluvial sands (Section C-C'; Figure 3).

Bedrock was drilled at three locations (MW-3D, MW-10D, and MW-11). Shallow bedrock at these locations is composed of siltstone and fine-grained sandstone. The boreholes were augered between 5 feet and 13.5 feet into bedrock, with generally little difficulty, indicating that the bedrock is weathered and/or moderately friable. At MW-10D, the borehole was advanced 13.5 feet into bedrock before bedrock composition prevented further auger drilling. A sample of bedrock retrieved in the tip of a split-spoon was composed of well cemented, fine- to medium-grained quartz sandstone with occasional coarse sand to fine gravel sized shale clasts.

3.1.2 Subsurface Ash/Coal Distribution

1.

1

۱ ۱

1

ا ا

١

Ľ

1.

Ľ

Ľ

Fill is present across much of the site, based on the boring log data for the direct-push borings and all monitoring well boreholes. In general, the fill consists of sandy silt and silty sand that was likely generated from on-site excavations and site grading. The fill is underlain by native materials that often contain evidence of the former ground surface (e.g., root fibers, topsoil) and in some areas, such as near the coal storage area and along the former railroad spur, contains

hutsonville hydrogeologic assessment.doc

trace amounts to thin layers of coal. Where encountered, the fill ranges from about two feet to eight feet thick.

Coal ash is found predominantly in three areas of the plant site. Most of the ash that has been generated by the Hutsonville Plant is located in the two ash impoundments. In addition, ash was placed in the area between the southern portions of the impoundments, in what was one of two cells that originally made up the unlined ash impoundment. Some ash from this area, called the former ash laydown area, was reportedly used in the construction of the berm for the lined ash impoundment. The former ash laydown area is roughly triangular in shape and covers an area of about six acres (Figure 1). Ash in this area was encountered to a depth of 19 feet (GP-2 location) near the southwest corner of the unlined ash impoundment; however, this probe location was subsequently identified as being in an area where the ash and underlying soil had been excavated for a pipeline repair. The excavation was back-filled with a soil-ash mixture, as identified on the GP-2 boring log (Appendix A). Plant personnel report that maximum ash thickness in the laydown area is about 12 feet (Section A-A'; Figure 3).

Four direct-push probe holes (GP-20 – GP-23) were advanced through the ash in the unlined impoundment. Ash thickness ranged from about 12 feet at the north end of the impoundment (GP-22 location) to 31 feet in the central portion of the impoundment (GP-23 location) (Section C-C'; Figure 3).

Prior to the 1980s, coal was shipped to the plant by railroad following a spur that ran south of the lined ash impoundment and then between the impoundments to the coal unloading area. The spur was removed in the 1980s. Currently, coal is delivered to the plant by trucks. Most of the coal is stored in the coal storage area north of the aboveground fuel oil storage tank. At one time, there was reportedly a small coal pile (approximately 150 yd²) located south of the lined ash impoundment area. This pile was moved to the current coal pile in December 1952. In addition, coal spillage occasionally occurred along the railroad spur when the bottom discharge doors on a coal train car accidentally opened. The spilled coal was reportedly cleaned up periodically with a shovel and wheelbarrow and added to a reclamation pit.

hutsonville hydrogeologic assessment.doc

÷-,

ì

During this field study, minor amounts of coal were observed in borings near the southeast corner of the lined ash impoundment. Coal amounts ranged from a trace in near-surface soils (GP-5, GP-6 locations) to an approximate one-foot thick layer beneath the southwest corner of the ash laydown area (GP-3 location) (Section B-B'; Figure 3). A four-inch thick, surficial layer of coal refuse was logged during installation of MW-2 and MW-3 (HEI, 1984); however, this layer was reportedly removed when scrap metals and other refuse were removed from this area in the 1980s. No coal or other refuse were observed at the surface, outside of the coal pile, during the 1998 field activities.

3.1.3 Bedrock Topography

٠I

1

The bedrock surface beneath the upland areas slopes gently toward the Wabash River; however, that slope steepens abruptly at the Wabash River bedrock valley (Figure 4). Bedrock elevation is about 445 feet above mean sea level (MSL) along the west side of the plant property and about 435 feet MSL beneath the power house, the lined ash impoundment, and the western portion of the unlined ash impoundment. Bedrock elevation is less than 350 feet MSL in the Wabash River bedrock valley, which lies beneath the eastern half of the unlined ash impoundment. A broad bedrock rise occurs in the area between the two ash impoundments, extending from south of the plant site to about the coal storage pile. Bedrock elevation of nearly 445 feet MSL was encountered at the southeast corner of the lined ash impoundment (MW-3). To the northeast, an elevation of about 447 feet MSL was observed beneath the north end of the unlined ash impoundment (GP-22). Bedrock along this high appears to protrude above the water table, at least during periods of low groundwater elevation (Section C-C'; Figure 3).

3.2 Site Hydrogeology

3.2.1 Hydraulic Conductivity

Values for horizontal hydraulic conductivity (K_h) were calculated for six new and five preexisting monitoring wells using the Bouwer and Rice (1976) data analysis method for unconfined aquifers. Data and analysis plots are listed in Appendix B. Horizontal hydraulic conductivity values for the alluvial and outwash units ranged from 2.2×10^{-1} ft/min (1.1×10^{-1} cm/s) to 5.1×10^{-4} ft/min (2.6×10^{-4} cm/s) (Table 5). The screen for MW-7 (lowest K_h value) was installed mostly in alluvial sandy silt, while the screen for MW-12 (highest K_h value) was positioned in a sand zone relatively free of silt and clay. The geometric mean K_h of the unlithified materials is 1.5×10^{-2} ft/min (7.6×10^{-3} cm/sec). Bedrock K_h was relatively uniform at about 9.4 x 10^{-4} ft/min (4.8×10^{-4} cm/s).

3.2.2 Groundwater Flow

Groundwater flow conditions at the Hutsonville Plant site were assessed using water level data collected on November 16-18 and April 29-30, 1999; generalized groundwater flow directions for the unlithified units are illustrated in Figures 5 and 6.

The groundwater surface contour map for Nov. 16-18, 1998 was constructed using the water level data from 10 shallow monitoring wells screened in the unlithified deposits and the pool elevation for the Wabash River (428.4 feet MSL). Water level data from 9 shallow monitoring wells screened in unlithified deposits and the pool elevation for the Wabash River (438.0) were used to construct the April 29-30 groundwater surface contour map. Horizontal hydraulic gradients in the unlithified deposits and vertical gradients between the deposits and underlying bedrock were determined from the water level data. Elevations generally decreased toward the east in the direction of the Wabash River, a regional groundwater sink.

The groundwater surface throughout most of the plant site occurs within sand and gravel. However, near the river, it occurs within alluvial silt and clay deposits, and near the southern

portion of the unlined impoundment the groundwater surface occurs within ash (Section A-A'; Figure 3). Unconfined conditions occur in the areas where the water table occurs within the sand and gravel deposits; whereas, semi-confined conditions likely occur in the areas where the groundwater surface is in the alluvial silts and clays. The coarse-grained deposits are the most-likely pathways for migration of coal ash leachate from the impoundments.

Horizontal gradients varied across the site Based on the November 16-18, 1998 groundwater elevation data, the horizontal hydraulic gradient ranged from about 0.0041 ft/ft to 0.0065 ft/ft across the site. Gradients were as steep as 0.020 ft/ft in the former ash laydown area and 0.053 ft/ft, between the plant generating building and the Wabash River. A slight, but historically persistent, groundwater high was apparent near the southeast corner of the lined ash impoundment, based on water level data from new well MW-13 and nearby pre-existing wells (MW-2, 3, and 4), all of which were surveyed in October 1998.

Horizontal groundwater flow velocity varies with hydraulic gradient and hydraulic conductivity. Assuming a geometric mean hydraulic conductivity of 1.5×10^{-2} ft/min (7.6 x 10^{-3} cm/s), and an assumed effective porosity of 0.20, groundwater velocity ranges from 150 ft/yr to 240 ft/yr in the sand and gravel deposits across the site.

While groundwater flow over most of the site is east toward the Wabash River, groundwater elevations at MW-2 have historically been lower than at MW-3 (Figure 5), suggesting potential for westward (reverse) flow between these wells. Head differential between these wells was several feet from 1986 through 1996 (Figure 7), approximately corresponding to the time during which the sluicewater pipe connecting the two impoundments was leaking. The abrupt decrease in elevation at MW-3 in 1996 is likely due to repair of the pipe leak. However, since 1996, groundwater elevation in MW-3 has usually been slightly higher than MW-2, possibly suggesting residual effects from the pipe leak. The November 16-18, 1999 groundwater elevation data suggest a westward hydraulic gradient of 0.00047 ft/ft between MW-3 and MW-2. Given the much larger eastward gradient observed across this site, it is likely that any reverse (westward) flow in this area will wrap around this anomaly and discharge to the Wabash River.

Groundwater velocity was calculated for the area of reverse flow using the hydraulic conductivity value of 5.2 x 10^{-2} ft/min calculated for MW-3, a gradient of 0.00047 ft/ft, and an estimated effective porosity value of 0.2, with a resulting value of about 64 ft/year.

Vertical gradients at piezometers are depicted visually in graphs on Figure 8. Vertical gradients between the unlithified deposits and shallow bedrock were estimated from monitoring well nests MW-10/10D and MW-3/3D. The MW-10 well nest had a fairly consistent downward vertical gradient, while there was no consistent upward or downward vertical gradient at the MW-3 well nest. The lack of consistent vertical gradient at MW-3/3D does not suggest high potential for flow into bedrock; however, vertical gradients may have been stronger downward prior to repair of the sluicepipe in 1996. Vertical gradients at MW-7/7D were typically downward; however gradients at this well nest are expected to be influenced by fluctuations in Wabash River stage, and the short period of observation (November 1998 – April 1999) does not provide sufficient data to evaluate these effects.

3.2.3 Elevation of Groundwater Relative to Ash

Ash was encountered in seven direct-push probe holes (GP-1, 2, 3, 20, 21, 22, 23) and in one monitoring well boring (MW-12), located within the unlined ash impoundment and former ash laydown area (Figure 1). Ash in the central and southern portions of the unlined ash impoundment extended as much as 16 feet below the groundwater surface. The thickness of saturated ash is dependent on the elevation of the water table, which varies seasonally and with changes in Wabash River stage. The values for ash thickness listed here are based on water table elevation in November 1998, when it was near average based on observations at MW-6, MW-7, and MW-8.

hutsonville hydrogeologic assessment.doc

3.3 Nearby Groundwater Users

Water well logs for all wells in the sections surrounding Township 8N, Range 11W, Section 17 of the West Union, Illinois-Indiana USGS quadrangle were queried from the Illinois State Groundwater Survey (Figure 9). Water well logs are included in Appendix D for reference. The two water supply wells located in Section 17 are plant extraction wells EW-1 and EW-2. The closest off-site wells are south of the site (Section 20), where two irrigation wells for the Dement and Wampler farms draw groundwater from depths of 64 and 32 feet, respectively, near the Wabash River, in the northeast ¼ of the section.² Further to the south in the southwest ¼ of the southeast ¼ of Section 20, City of Hutsonville public water supply Well #4, draws groundwater from a maximum depth of 61 feet below ground surface. No recent groundwater quality data is available for any of the aforementioned supply wells. All of these wells are screened in the deep sand and gravel in the Wabash River valley.

² Well locations described on the well records appear incorrect, because the lithologic description on the logs is of alluvial sediments while the indicated locations are outside the Wabash River valley. Based on knowledge of the site, these wells are assumed to be in the northeast corner of the section.

4 GROUNDWATER QUALITY IN DIRECT-PUSH SAMPLES

4.1 Parameters of Concern

÷

ł

The Hutsonville work plan identified boron, sulfate, manganese, pH, and TDS as parameters of concern (POCs) because they had concentrations in groundwater near the impoundments that exceeded Illinois Class I groundwater standards. These POCs historically exhibited the highest frequency of exceedances in monitoring well MW-3, at the southeast corner of the lined ash impoundment, and in MW-6 and MW-8, located south and east of the unlined impoundment, respectively. Boron and sulfate are indicator parameters of coal ash leachate. Manganese is ubiquitous in soils, and may have higher concentrations in soil than in coal ash; therefore, it is not a reliable indicator of coal ash leachate. The pH of coal ash can be high, neutral, or low, depending on the geochemistry of the ash; therefore, pH is not always a good indicator of coal ash leachate migration. High TDS may be observed at sites where coal ash leachate migration occurs because high TDS concentrations reflect elevated concentrations of soluble ash constituents such as calcium, potassium, sodium, and sulfate; however, other natural and anthropogenic sources can cause high TDS concentrations. The following discussion focuses on results from the direct-push water samples, and includes iron and nickel because these parameters sometimes have high concentrations in groundwater near coal piles. Complete results of the direct-push water quality sample analyses are provided in Appendix C.

4.2 Direct-Push Leachate Samples

Ash leachate samples were collected from the lined impoundment (LP-1 and LP-2), from the unlined impoundment (GP-20, GP-21, and GP-23), and from the former ash laydown area (GP-2). Boron, sulfate, and TDS concentrations ranged from about 1.5 to 27 times the groundwater standards (2 mg/L, 400 mg/L, and 1200 mg/L, respectively) in most of the leachate

hutsonville hydrogeologic assessment.doc

samples; however, sulfate and TDS were slightly below the standards at location GP-20 in the unlined ash impoundment (Table 6).

Manganese was between 18 and 165 times the standard (0.15 mg/L) in leachate from the unlined ash impoundment and from the former ash laydown area, but was less than one-tenth the standard in the lined ash impoundment (lowest concentrations on site), thereby exhibiting its unreliability as an ash indicator parameter. Iron was below the standard in all leachate samples from the impoundments, but exceeded the standard in the sample from the former ash laydown area. Nickel was less than one-third the standard (0.10 mg/L) in all of the leachate samples.

The pH of the coal ash leachate was neutral to alkaline. The pH of the "fresh" leachate in the lined ash impoundment was above 9.0, while the pH in the unlined ash impoundment was slightly elevated at 7.3 to 7.6. The pH at location GP-2, in the former ash laydown area, was near neutral at 6.8.

4.3 Direct-Push Groundwater Samples

Boron and sulfate concentrations in groundwater between the ash impoundments were higher than the Class I groundwater standards. Boron concentrations ranged from 4.6 mg/L to 28.2 mg/L and sulfate concentrations from 398 mg/L to 1531 mg/L near the southeast corner of the lined ash impoundment (see GP-3 through GP-6, Table 6). Boron also exceeded the standard in one sample near the coal pile, while three samples, including GP-11 directly beneath the coal pile, had boron concentrations below the standard, and generally lower than near the ash impoundments. Sulfate concentrations were highest near the coal storage pile, ranging from 867 mg/L to 7143 mg/L. Off-site (south of the impoundments) boron concentrations were less than one-fifth the groundwater standard, and sulfate concentrations were less than one-third the standard.

Manganese concentrations were above the Class I groundwater standard in all of the direct-push groundwater samples from the plant site. The highest concentration occurred in coal pile area

boring GP-10 (26.7 mg/L). Manganese was less than one-tenth the standard at the five off-site probe hole locations south of the impoundments, but was above the standard in off-site boring GP-14 (0.93 mg/L), located southeast of the impoundments.

Iron concentrations only exceeded the standard in groundwater samples from the coal pile area. A concentration of about 3,300 mg/L was repeated in all three replicate samples from GP-10. However, iron concentrations were very low at GP-9, which was downgradient of the coal pile, suggesting limited migration. The limited observed iron migration may be due to geochemical changes, which are evidenced by a pH change from less than 5.0 beneath the coal pile to 6.8 at GP-9.

Nickel concentrations ranged from below detection (<0.005 mg/L) to 3.2 mg/L, and exceeded the Class I groundwater standard in the coal pile storage area (GP-10, GP-11, and GP-12) and near the southeast corner of the lined ash impoundment (GP-5). Elevated nickel concentrations occurred in areas currently used for coal storage or in which coal spillage occurred in the past, such as along the former railroad spur near locations GP-3, GP-5, and GP-6. However, nickel concentration in GP-9, which was downgradient of the coal pile, was below the standard, suggesting that nickel migration is limited. Nickel was below detection in the five off-site probe hole locations south of the impoundments, and was detected at a concentration lower than the standard in off-site boring GP-14 (0.014 mg/L), located southeast of the impoundments.

Exceedances of pH in groundwater were for values lower than the Class I standard of 6.5. Values of pH, ranging from 2.8 to 6.3, occurred in all probed areas on the plant site. These values were lower than off-site pH values (7.4 to 8.0) and ash pond/leachate pH values (6.8-10.0).

TDS exceedances generally exhibited a distribution similar to that of the sulfate exceedances, and probably reflect that distribution. Off-site TDS concentrations were less than 1000 mg/L.

hutsonville hydrogeologic assessment.doc

Overall, the direct-push results suggest a correlation between groundwater quality and potential leachate sources. Groundwater near the coal ash impoundments generally had high boron and sulfate concentrations. Groundwater near the coal pile typically had high nickel, iron, and sulfate concentrations. Groundwater near the coal pile also had very low pH.

hutsonville hydrogeologic assessment.doc

5 GROUNDWATER QUALITY IN MONITORING WELLS

5.1 Parameters of Concern

As stated in the previous section, the POCs in groundwater include boron, sulfate, maganese, pH and TDS. Iron and nickel were also included as POCs, because they were detected in direct-push samples. Boron and sulfate are the primary indicator parameters for coal ash due to their consistent occurrence at coal ash sites. Groundwater results are included as a Microsoft® Excel spreadsheet on a diskette attached to the back of this report. The following discussion focuses on groundwater results collected since new monitoring wells were installed (October 26, 1998 through May 24, 1999).

5.2 Groundwater Results

A review of groundwater trends by POC and area of the site, is included in this section. Figures 10 and 12 through 17 present a graphical interpretation of the extent of groundwater exceeding Illinois Class I groundwater standards for each compound, based on median groundwater concentrations from October 26, 1998 through May 24, 1999. Median and maximum results are shown in the drawings. Concentration references are to the data shown in the Figures and Table 7, which summarizes the upper 95% prediction limit for each POC shown, calculated using the inclusive sampling data from October 26, 1998 to May 24, 1999.

The distribution of recent boron concentrations is illustrated in Figure 10. Boron concentrations exceed the Class I groundwater standard at eight monitoring wells, but concentrations are highest in the former ash laydown area (MW-13) and unlined ash impoundment area (MW-6, MW-8). Boron is present in bedrock piezometer MW-3D; however, that concentration is likely due to leakage from the sluicepipe. Similarly, boron concentration in MW-2 appears to be related to the pipe leak. The concentration of boron over time in MW-2 and MW-3 is presented in Figure 11.

Boron concentrations in MW-3 prior to the construction of the lined ash impoundment are likely due to the proximity of the well to the former ash laydown area. Assuming groundwater velocity calculated in Section 3.2 for MW-3 toward MW-2, the appearance of boron in elevated concentrations in MW-2, coincides with the travel time for boron transport from MW-3 to MW-2, or approximately 10 years, assuming a boron retardation factor of 1.5. Boron concentrations in both wells have been decreasing since their peak, suggesting that the effects of the pipe leak are diminishing since it was repaired in 1996. The extent of Class I groundwater standard exceedences shown on Figure 10 correlates with direct-push sample data.

Sulfate concentrations exceeded the Class I groundwater standard in and downgradient of the coal storage area, the old ash impoundment, and the old ash laydown area (MW-2, MW-3, MW-3D, MW-8, MW-9, MW-11, and MW-13). Direct-push samples indicate results consistent with monitoring well observations, presented on Figure 12.

Maganese concentrations exceed the site Class I groundwater standard in upgradient wells (MW-1, MW-10D), the former ash laydown area (MW-3, MW-3D, MW-11, MW-12 and MW-13), and in the unlined ash impoundment (MW-6, MW-7, MW-7D, MW-8 and MW-9), and are highest in monitoring wells MW-11 and MW-13, in the former ash laydown area (Figure 13). Direct-push groundwater samples correlate with the estimated extent of the Class I groundwater standard for maganese.

Iron is not present in groundwater monitoring wells above the Class I groundwater standard (Figure 14). This observation does not correlate with direct-push samples directly adjacent to the coal storage pile (GP-9, GP-10, and GP-11) where iron concentrations were above the Class I groundwater standard; however, no monitoring wells were finished in the coal storage pile area. Iron is not present in monitoring wells downgradient of the coal storage pile area above the Class I groundwater standard (MW-7, MW-8), indicating no offsite migration.

Nickel concentration exceeds the Class I groundwater standard in MW-11 and MW-13 (Figure 15). Elevated concentrations of nickel in MW-11 and MW-13 coincide with low pH

hutsonville hydrogeologic assessment.doc

ľ

i

I

F

readings and locations of near-surface coal deposits (Table 7). Nickel exceeds the Class I groundwater standard in direct-push samples, located near the coal storage area and the former ash laydown area (GP-5, GP-10, GP-11, and GP-12), coincident with low pH (Figure 16), and, in the case of the coal storage area, elevated iron concentrations.

Total dissolved solids (TDS) is present in on-site groundwater monitoring wells above the Class I groundwater standard in the same locations as sulfate exceedences (Figure 17). As described previously, elevated sulfate concentrations in coal ash leachate can cause high TDS concentrations. TDS distribution in ash leachate and groundwater direct-push samples shown on Table 6 also reflects this association.

5.3 Surface Water Results

Surface water samples were collected from pooled surface water, or "ponds" at the approximate locations shown in Figure 1, in April 1999. Surface water samples were collected from ponds located in the lined ash impoundment (LAP); unlined ash impoundment (UAP); coal storage area (CYP); and-south of the former-ash-laydown-area (P2P):--Sample results are summarized in Tables 6 and 7 for comparison with groundwater and leachate samples in the same general locations. Leachate samples in the lined ash impoundment correlate with elevated concentrations of boron in surface water sample LAP. Groundwater and leachate results in the unlined ash impoundment area correlate with elevated concentrations of boron and maganese in surface water sample UAP, although concentrations are much lower in the surface water sample. Elevated maganese, iron, nickel, sulfate and TDS in sample CYP, along with low pH, correlate to direct-push groundwater samples from the coal pile storage area. The P2P sample is dissimilar to any groundwater samples and likely does not represent any source areas.

5.4 Source Area and Receptor Analysis

The direct-push, monitoring well, and surface water sample data suggest two general sources for groundwater impacts at this facility: 1) the unlined ash impoundment and ash laydown areas, and 2) the coal pile and coal spill areas.

Groundwater affected by the ash impoundment and ash laydown areas is characterized by boron concentrations greater than 2 mg/L, sulfate concentrations greater than 200 mg/L, and neutral to alkaline pH. Manganese concentrations tend to be greater than 1 mg/L in these areas; however, the ubiquitous nature of manganese in the environment makes it difficult to determine whether manganese in groundwater is released from the coal ash or whether reducing conditions potentially caused by the coal ash impoundment are causing release of manganese from the soil. Relatively low boron and sulfate concentrations in wells MW-4 and MW-5, immediately downgradient of the lined ash impoundment, suggest that it is not a significant source of groundwater impacts.

Groundwater_affected_by_the_coal_pile_and_coal_storage_areas_is_characterized_by_boron concentrations greater than 1 mg/L, sulfate concentrations greater than 500 mg/L, iron concentrations greater than 10 mg/L, nickel concentrations greater than 0.10 mg/L, and acidic pH. Again, manganese concentrations tend to be greater than 1 mg/L in this area. The constituents that differentiate coal impacts from ash leachate impacts are iron, nickel, and pH.

These characteristics suggest that sources affecting groundwater monitoring wells can be identified by groundwater quality and by position relative to the sources (Table 8). The results of this hydrogeologic assessment indicate that coal impacts are restricted to the source areas. Neither direct-push nor monitoring well data outside of the coal pile and coal spill areas showed characteristics of coal impacts. Alternatively, characteristics of ash impacts were observed downgradient of the ash disposal areas, and boron and sulfate are known to be mobile in groundwater; therefore, migration of these constituents toward the Wabash River (the regional groundwater sink) is likely.

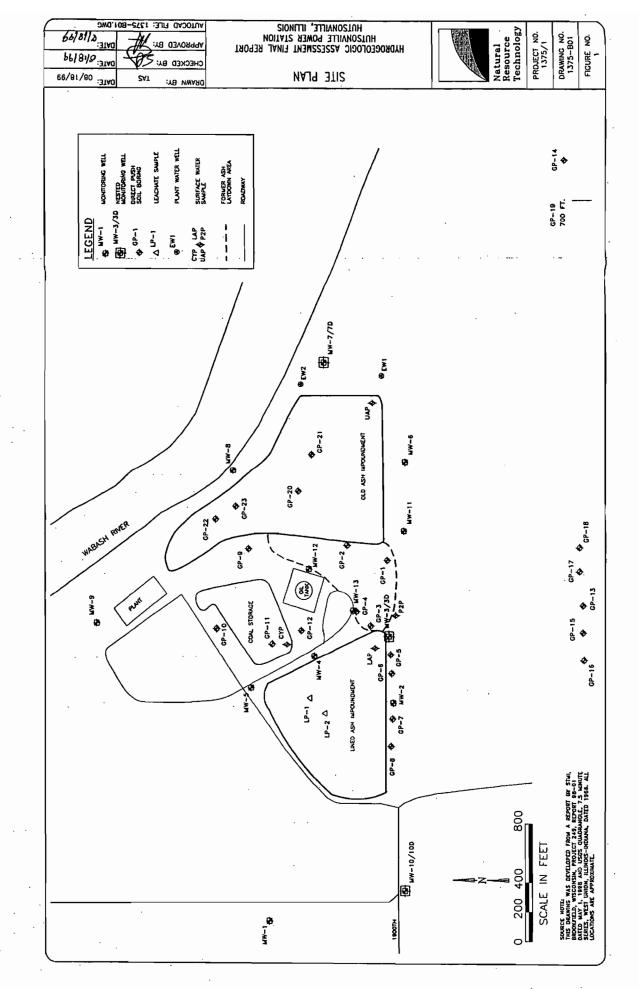
There are no groundwater extraction wells, other than the plant wells, between the source areas identified in this hydrogeologic assessment and the Wabash River. The plant wells, as well as two irrigation wells that are southeast of the facility, are completed in deep sand and gravel in the Wabash River valley, which is overlain by less permeable silty sediments. Furthermore, groundwater quality at MW-7D, a relatively deep monitoring well finished in the Wabash River valley, is within standards, with the exception of manganese, which is likely due to anoxic conditions beneath the river sediments. The low boron and sulfate concentrations in MW-7D well suggest little vertical migration of ash constituents; therefore, migration from the ash impoundments is directly to the river, rather than downward toward any extraction wells.

6 CONCLUSIONS

- The hydrostratigraphy of the upland area where the ash impoundments are located consists of a thin layer of unlithified sand-rich material overlying sandstone and siltstone bedrock. The unlithified sands are more permeable than the sandstone and therefore constitute a more-probable pathway for leachate migration from the impoundments.
- There are three areas with coal ash fill: 1) the unlined ash impoundment; 2) the lined ash impoundment; and 3) a former ash laydown area immediately west of the unlined ash impoundment.
- Saturated ash was encountered within the unlined ash impoundment, with saturated thickness up to 16 feet.
- Direct-push water samples indicated high concentrations, relative to Class I standards, of boron, manganese, sulfate, and TDS in ash leachate, although manganese concentrations were only high in samples from the unlined impoundment.
- The direct-push groundwater samples showed no evidence of groundwater impacts south of the impoundments.
- Groundwater samples from some on-site monitoring wells and probe holes had concentrations of boron, manganese, sulfate, TDS, iron, and nickel higher than Class I standards. High iron and nickel concentrations were found in locations where coal was present near the land surface.
- These observations indicate two sources for groundwater quality impacts: 1) the coal pile and coal spill areas, and 2) the ash laydown area and unlined ash impoundment. There is no evidence that iron and nickel from the coal pile and coal spill areas is migrating

beyond those areas. However, boron and sulfate from all sources are migrating east toward the Wabash River.

There are no groundwater extraction wells in the shallow sediments between the unlined ash impoundment and the Wabash River. There are four extraction wells within ½ mile of the site, all finished in deep sand and gravel in the Wabash River valley. Two wells are directly east of the unlined impoundment and are used for plant water, and two wells are southeast of the impoundment and used for irrigation water. Groundwater quality data from monitoring well MW-7D, which is directly downgradient of the unlined ash impoundment and is the deepest on-site monitoring well in the Wabash River valley, indicates no evidence of ash impoundment or coal pile impacts at that depth.

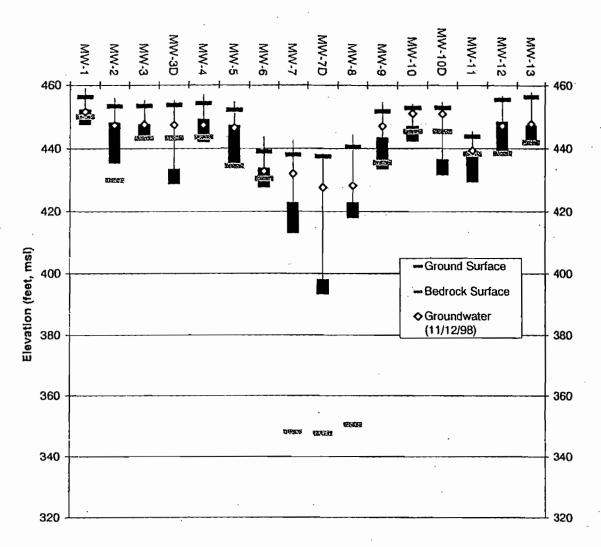
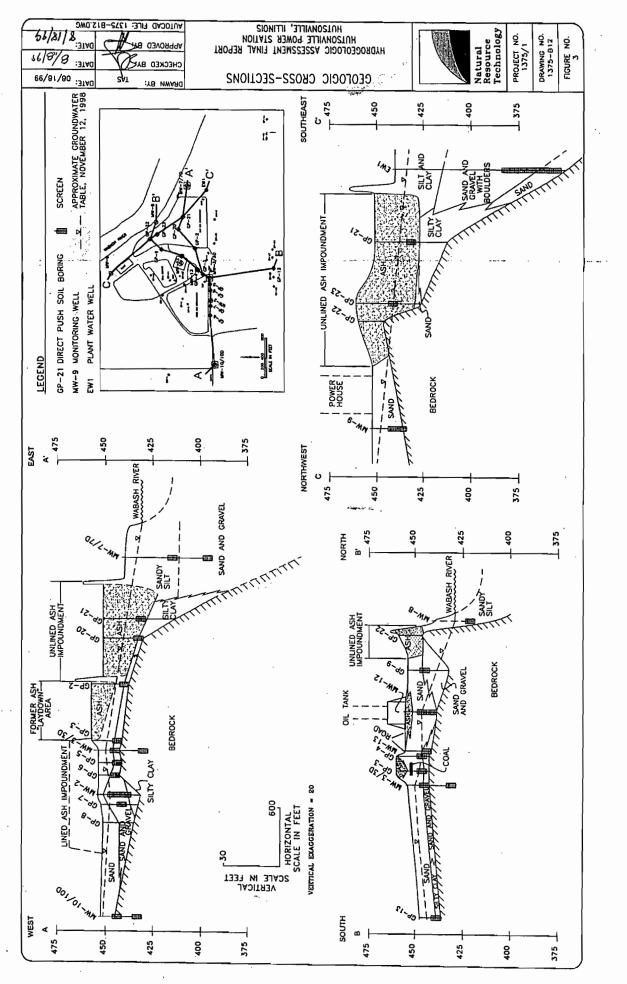

hutsonville hydrogeologic assessment.doc

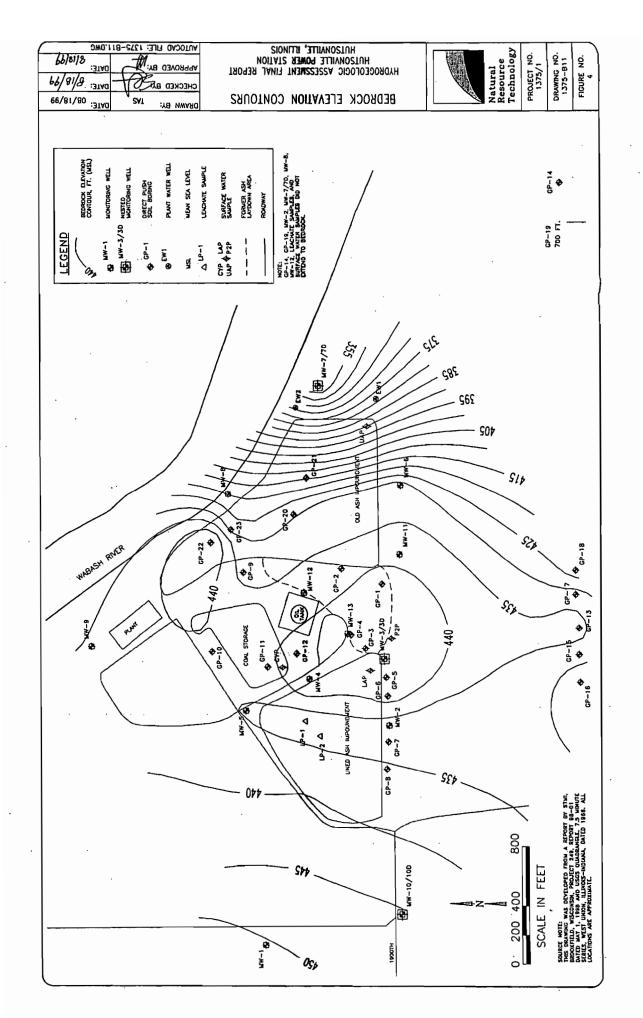
ŀ

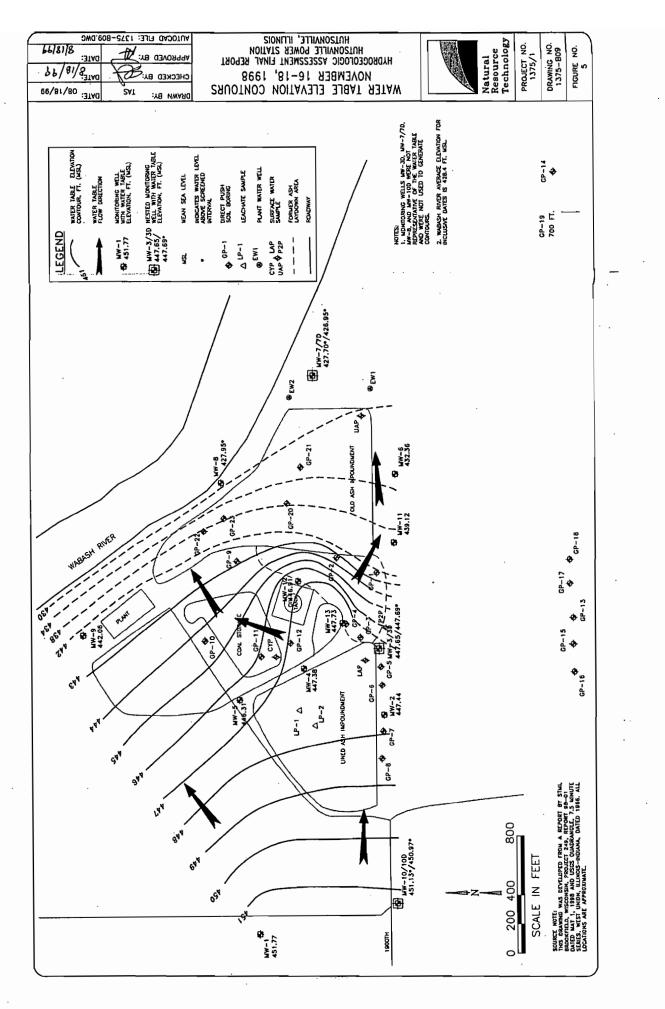
Natural Resource Technology

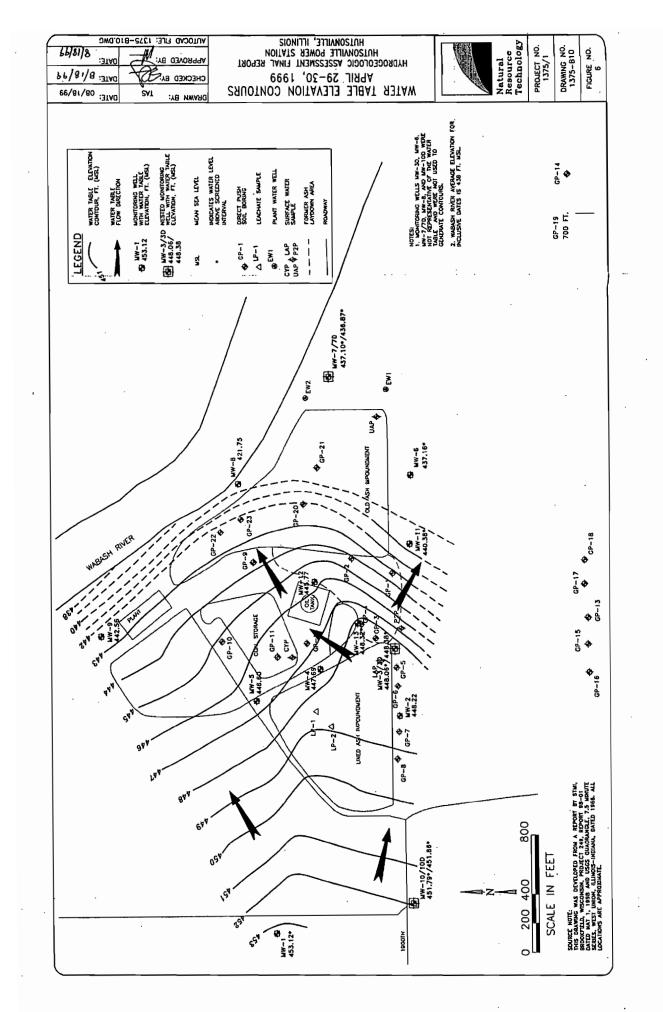
.

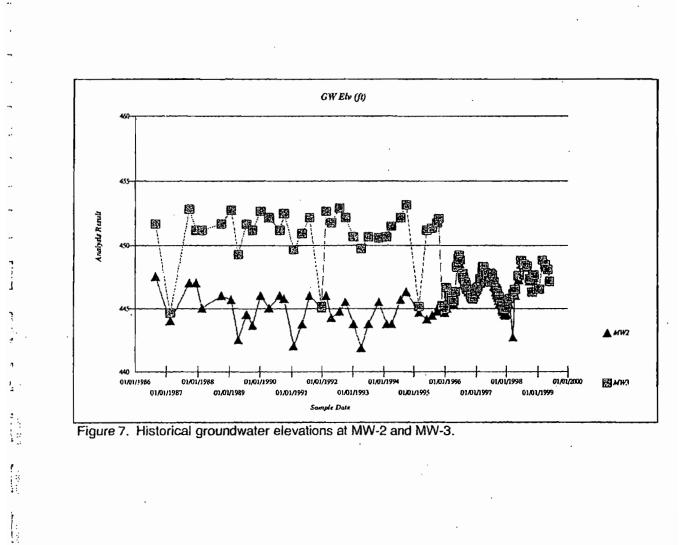
FIGURES

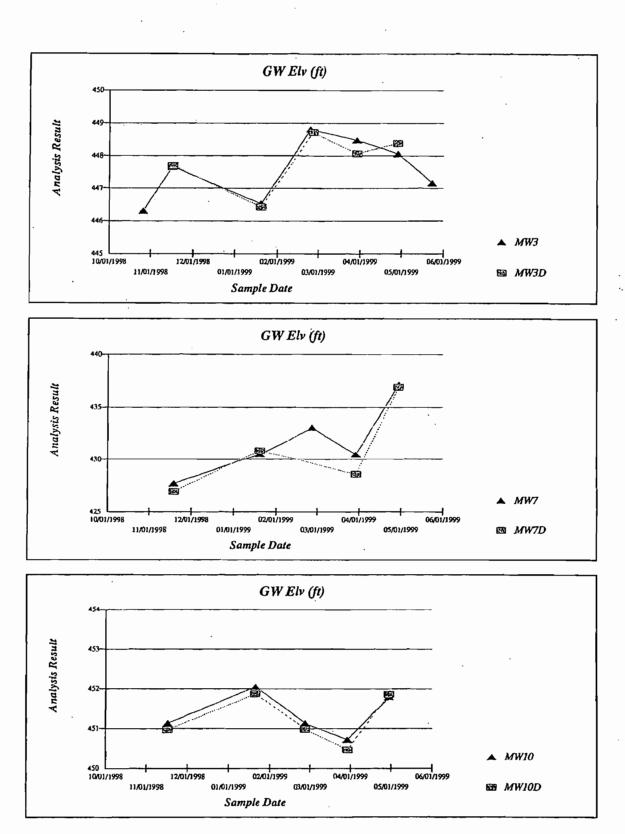

Figure 2. Elevation of well screens, ground surface, bedrock surface, and groundwater. Bedrock surface depths for MW-7, MW-7D, and MW-8 are estimated.


> Natural Resource Technology





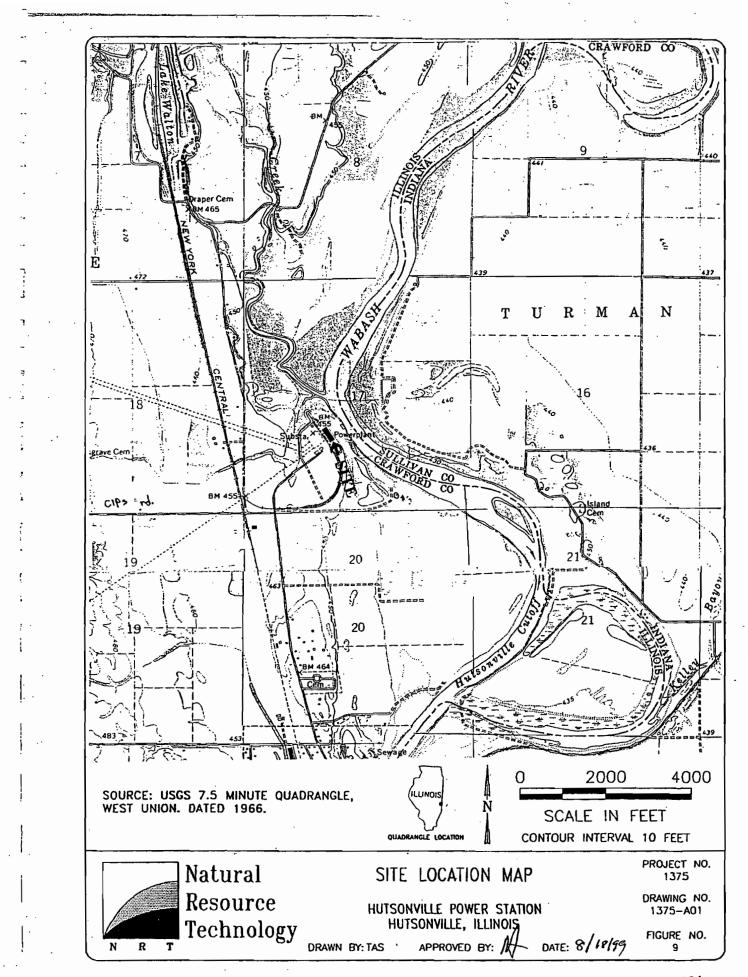
.....

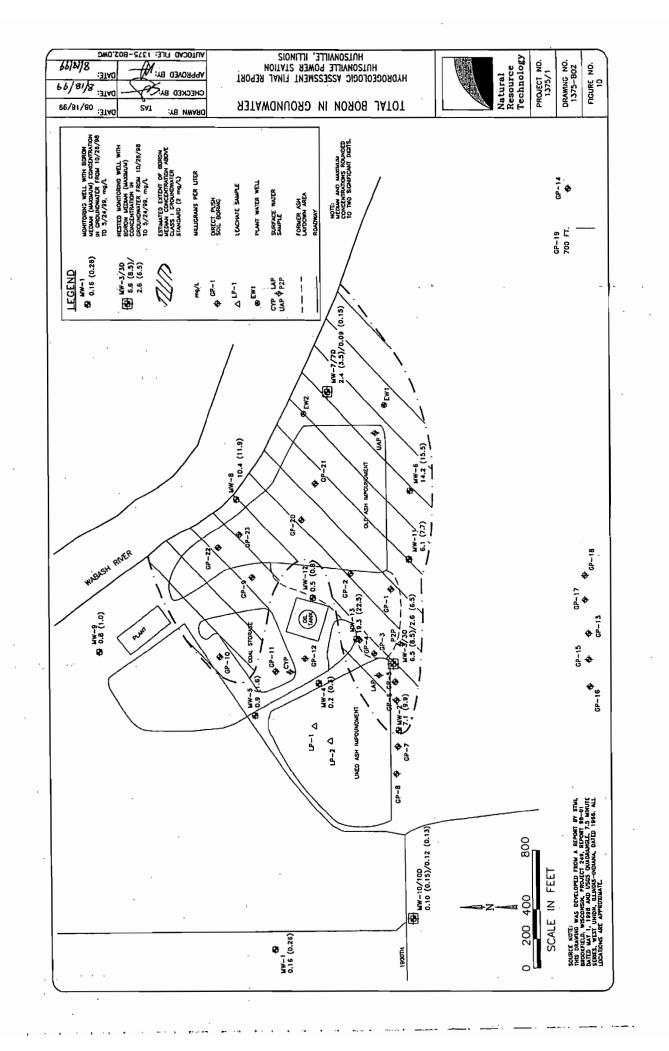


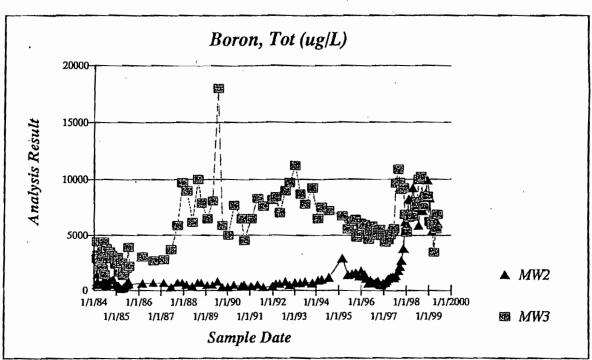
.

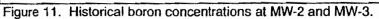
TSD 000219

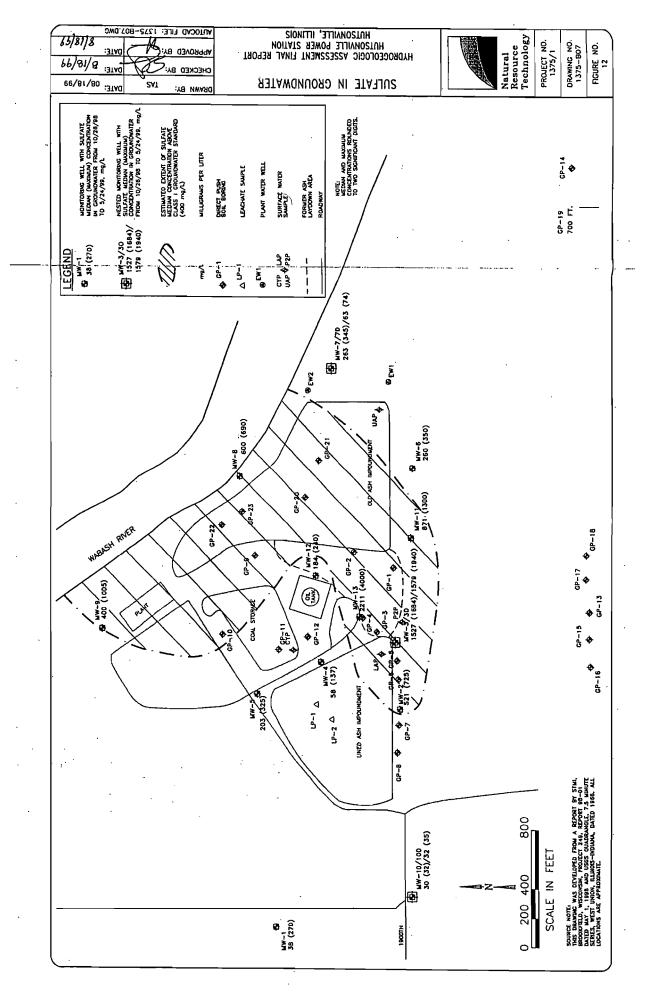
Natural Resource Technology

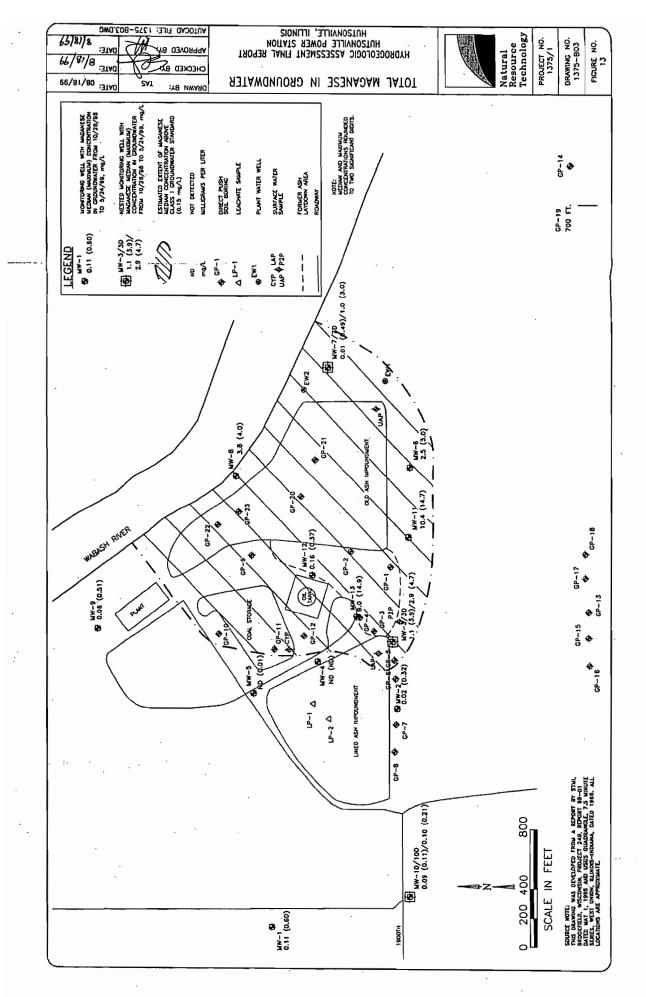


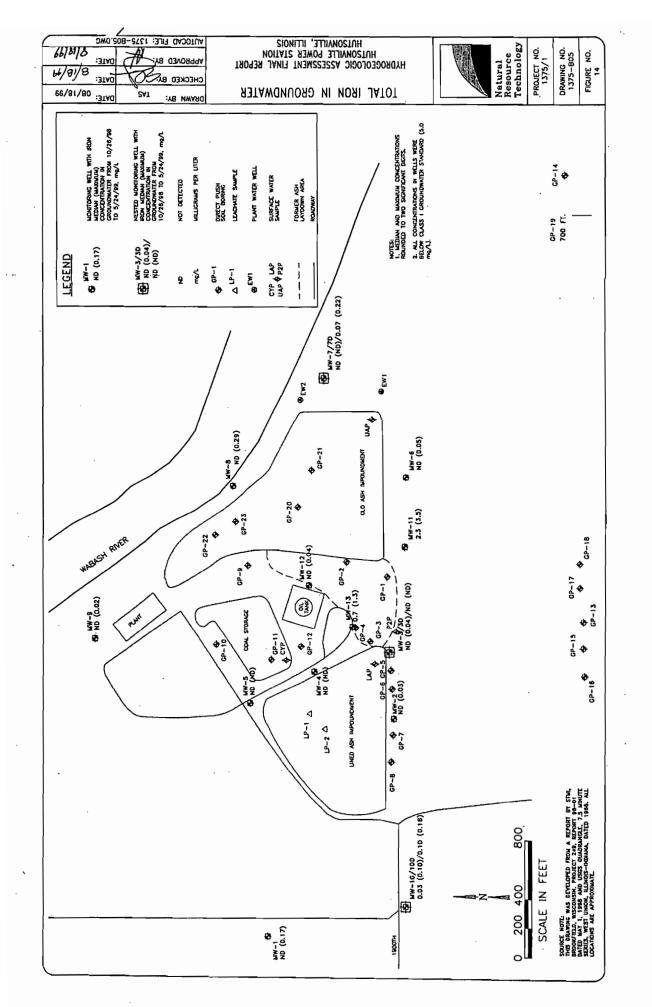

ħ.

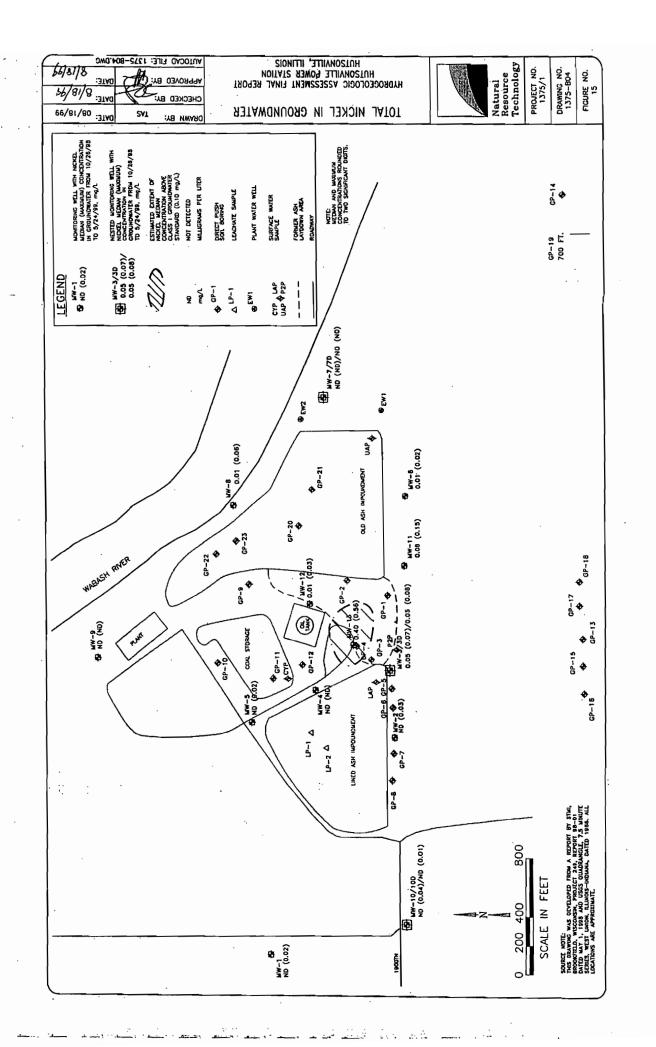

Figure 8. Historical groundwater elevations at nested wells (MW-3/3D, MW-7/7D, MW-10/10D).

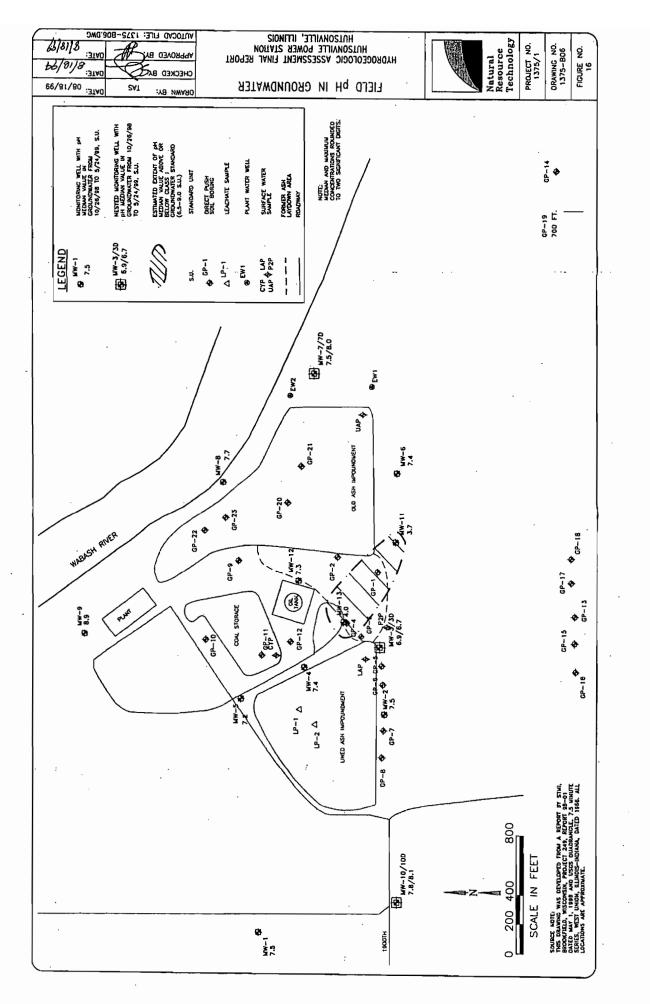

Natural Resource Technology

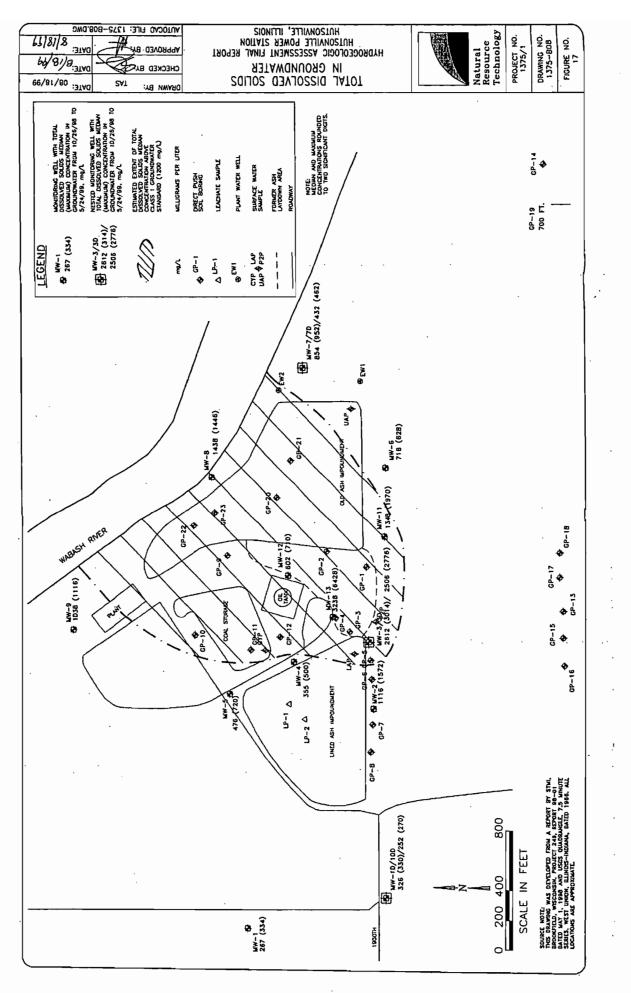


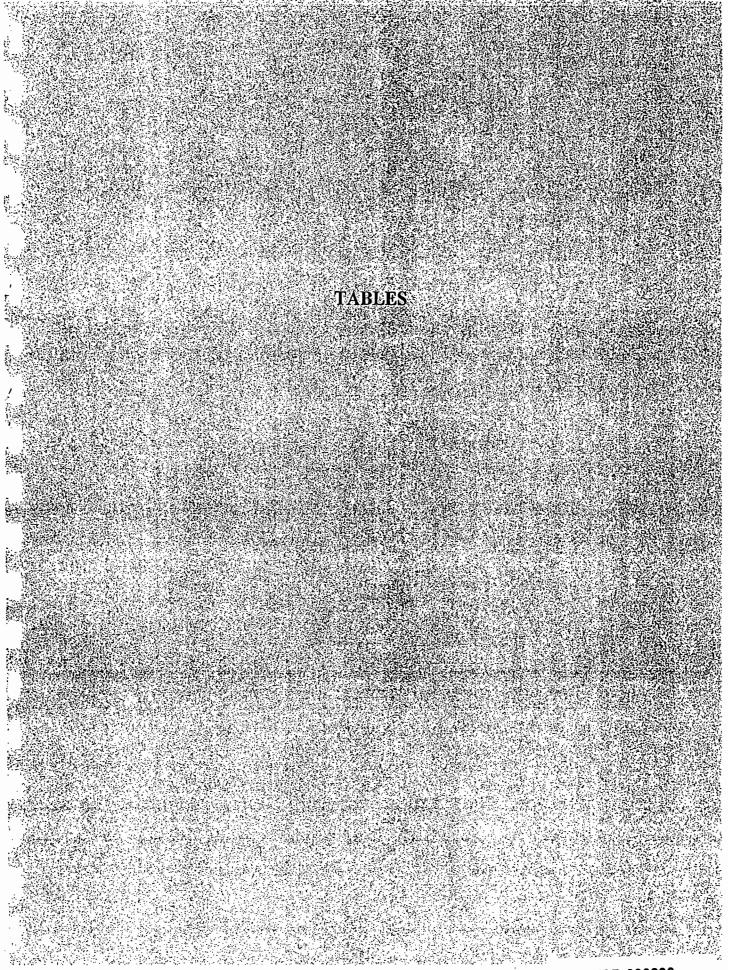







للله السبة الآلية المبلغ المتلك المتلك المتلك المتلك المتلك المتلك المتلك المتلك المتلك المراجع والمراجع المراجع





المركز المركز

Table 1 Direct-Push Sampling Data

Location	Northing	Easting	Ground Elevation	Screen ¹ Bottom Depth	Ash Depth	Coal Depth	Depth to Water		Surface Elevation
_	(ft)	(ft)	(ft, MSL ²)	(ft, BGS ²)	(ft, BGS)	(ft, BGS)	(ft, BGS)	(ft, BGS)	(ft, MSL)
GP-1	3586	4366	460	17 ³	0 - 2.5		14	17.3	442.5
GP-2	3753	4610	457	19	0 - 19	~	9	20.0	437.3
GP-3	3924	4093	459	16	1 - 5.5	7 - 8	11	16.0	443.3
GP-4	3951	4221	459	16		-	10	17.0	442.4
GP-5	3918	3859	453	11		1.8 - 1.9	6	11.3	441.9
GP-6	3981	3754	453	10		2.0 - 2.3	6	10.5	442.5
GP-7	4151	3512	452	10	-		4	18.0	434.0
GP-8	4263	3380	451	no water sample	·	trace ⁵	4	16.0	435.3
GP-9	4307	499 0	453	12	-	trace ⁵	7	21.0	432.4
GP-10	4779	4701	454	12		0 - 2.5	6	14.3	439.5
GP-11	4534	4399	453	· 10		0 - 1.5	5	13.0	439.5
GP-12	4325	4346	451	9		0 - 0.8	4	9.5	441.3
GP-13	2693	3354	447	9	-	~	4	10.0	437.0
GP-14	1105	5752	440	32		-	10	>40	<400
GP-15	2790	3213	450	12		-	4	18.0	431.8
GP-16	2887	3065	454	12		-	4	28.0	425.7
GP-17	2583	3541	446	8			4	12.0	433.6
GP-18	2488	3677	446	12		-	4	23.8	422.2
GP-19	(6)	(6)	~440	no water sample	-	-	10	>32	<410
GP-20	3805	5099	451	· 21	0 - 19	-	3	21.0	429.7
GP-21	3594	5239	451	- 22	0 - 23	-	3	36.5	414.2
GP-22	4373	5285	459	11 ³	0 - 11.5	-	>11.5	11.5	447.2
GP-23	4203	5273	461	22	0 - 31	-	7	34.0	426.7
LP-1 ⁴	4405	3961	466	7.3	0 - >7.3	-	1		-
LP-2 4	4502	3815	466	8	0 - >8	-	1	-	-

1. Four-foot stainless steel screen (for GPs) or polyvinyl chloride (PVC) screen (for LPs).

2. MSL = mean sea level; BGS = below ground surface.

3. Insufficient water sample recovery for laboratory analysis.

4. Temporary 1-inch outside diameter, PVC well point installed in lined ash impoundment.

5. Chips at 3 feet in GP-8 and at 0.5 feet in GP-9.

۲.

6. Surveyors could not locate GP-19. It was about 700 feet south of GP-14.

Natural Resource Technology, Inc.

······································	
Parameter	Method
Alkalinity	EPA 310.1
Boron	ICP – EPA 200.7 Appendix C to Part 136
Calcium	EPA 130.2
Chloride	ICP - EPA 300.0
Iron	ICP EPA 200.7 Appendix C to Part 136
Magnesium	EPA 130.2
Manganese	ICP - EPA 200.7 Appendix C to Part 136
Nickel	GFAA – EPA 249.2
Potassium	ICP - EPA 200.7 Appendix C to Part 136
Sodium	ICP – EPA 200.7 Appendix C to Part 136
Sulfate	ICP ~ EPA 300.0 or EPA 375.4
Total Dissolved Solids	EPA 160.1
Field Measurements	
рН	EPA 150.1
Eh ····	Std. Methods 18th ed.2580
Dissolved Oxygen	Std. Methods 18th ed. 4500-OG
Specific Conductance	EPA 120.1
Temperature	Std. Methods 18th ed. 2550
Groundwater Elevation	Water Level Indicator

Table 2 Water Sample Parameters and Analytical Methods

j_

n: 11 13

•

.

Natural Resource Technology, Inc.

Natural Resource Technology, Inc.

TSD 000233

				Surface	tor1	Total	Cooth to		- deceled	
Well	Date Drilled	Northing (ft)	Easting (ft)	Elevation (ft, MSL ²)	Elevation (ft. MSL)	Depth (ft. BGS)	Bedrock (ft. BGS)	Elevation (ft. MSL)	Penetration (ft)	Screened Formation ⁴
MW-1	2/14/84	5606	2964	456.4	459.12	8.9	6.3	450.1	2.7	sand, ss
MW-2	2/10/84	4087	3594	453.4	456.03	18.1	>21	<431.8	0	s&g
8-WM	2/8/84	3865	3957	453.5	455.16	10.8	10.3	443.2	0.5	ទ៥០
MW-3D	10/6/98	3860	3952	453.7	455.28	25.1	10.5	443.2	15.0	SS
MW-4	2/13/84	4351	4164	454.2	457.07	12.3	10.7	443.5	2.5	აზე, აა
MW-5	2/13/84	4822	4249	452.2	454.89	17.9	17.7	434.5	1.4	s&g, ss
8-WM	2/9/84	3095	4818	439.0	443.66	11.5	8.5	430.5	3.0	s&g, ss
7-WM	2/8/84	3166	5675	438.0	442.70	26.1	>25	<384	0	େ ୫୫୦
MW-7D	10/5/98	3176	5678	437.5	438.45	44.3	>44	<394	0	ଃ ା ଃଝଣ୍ଡ
MW-8	2/7/84	4081	5469	440.4	444.25	22.5	>21.5	<419	0	si sand
6-WM	2/14/84	5408	5205	451.9	454.66	18.4	16.3	435.6	2.4	si s&g, ss
MW-10	10/7/98	4730	2560	452.9	454.23	10.7	7.5	445,4	3.5	si s&g, ss
MW-10D	10/7/98	4729	2565	452.9	454,65	21.3	7.5	445.4	14.0	SS
MW-11	10/6/98	3371	4451	443.8	445.45	14.5	5.5	438.3	9.5	si s&g, ss
MW-12	10/8/98	4054	4638	455.5	456.74	16.9	17.0	438.5	0.0	si s&g
MW-13 ⁴	10/6/98	3962	4241	456.4	458.03	16.0	14.5	441.9	2.0	si såg
1. TOC = to	1. TOC = top of casing	1, TOC = top of casing o POC - below service and and the service and service		love						

Monitoring Well Locations, Elevations, Depth to Bedrock, and Screened Formation

Table 3

| | |

ĺ

÷٠ Į.

r .

0

.

F.

-ii li

ĺ

<u>____</u> .

[

.....

\ :

:

•

.

1 . 1

BGS = below ground surface; MSL = mean sea level.
 s&g = sand and gravel, si = siity, ss = sandstone.
 Total well depth for MW-13 includes a 2-foot sump.

Natural Resource Technology, Inc.

TSD 000234

Annular seal thickness includes bentonite-cement grout and bentonite pellets/chips.
 Concrete collar was not installed at shallow 1998 wells in order to maximize annular seal.

7. Depth to groundwater measured on November 12, 1998.

6. Volume removed during well development.

Monitoring Well Completion Details

Table 4

ļ.

ī

ļ.

ļ

[

Ī

n :: _____

ľ

· · · ·

:

.

, , ,.

;

Well	Screen Top Elevation (ft, MSL ¹)	Screen Bottom Elevation (ft, MSL)	Screen Length (ft)	Filter Pack Elv. ² (ft, MSL)	Fine Sand Thickness ³ (ft)	Bentonite Chip Thickness ³ (ft)	Annular Seal Thickness ⁴ (ft)	Concrete Collar Thickness ⁵ (ft)	PVC Casing Stickup (ft, AGS ¹)	Gallons Water Purged ^{3.6}	Depth to Water ⁷ (ft, TOC ¹)	Water Level Elevation ⁷ (ft, MSL)
MW-1	452.5	447.5	5,0	447,4-453.5			1.5	1.5	2.8		7.43	451.69
MW-2	448.3	435.3	13.0	431.8-449.3			2	2	2.6		8.67	447.36
MW-3	447.7	442.7	6.0	442,7-448,1			7	7	1.7		7.64	447.52
MW-3D	433.6	428.6	5.0	428.2-436.7	-	•	44	e	1.6	20	7.91	447.37
MW-4	449.4	441.9	7.5	441.0-450,4			7	2	2.8		9.72	447.35
MW-5	447.3	434.3	13.0	433.1-448.3			7	7	2.7		8.46	446.43
9-WW	433.9	427.5	6.4	427.5-434,9			7	2	4.6		10.83	432.83
MW-7	422.9	412.9	10.0	412.9-423.9			7	7	4.7		10.71	431.99
MW-7D	398.2	393.2	5.0	392.5-402.5	e	0	32	e	0.9	27	10.81	427.64
MW-8	422.9	417.9	5.0	417.9-423.9			7	2	3.8		16.05	428.20
6-WW	443.5	433.5	10.0	433.2-444.0			2	2	2.8		7.59	447.07
MW-10	447.2	442.2	5.0	441.9-448.9	0	-	4	ł	1.3	20	3.10	451.13
MW-10D	436.6	431.6	5.0	431.4-438.9	 –	-	4	ı	1.8	12	3.68	450.97
MW-11	439.3	429.3	10.0	428.8-439.8	0	-	4	1	1.7	22	6.15	439.30
MW-12	448.6	438.6	10.0	438.5-450.5	-	1.5	5	ı	1.2	23	9.63	447.11
MW-13	447.4	442.4	5.0	439.9-449.4	+	0.7	7	e	1.7	25	10.23	447.80
1. TOC = to 2. Filter pact	 TOC = top of well casing; MSL = mean sea level; AGS = above g Filter pack elevation range includes fine sand pack in 1998 wells 	j; MSL = meal ge includes fin	n sea level; e sand pacl	level; AGS = above ground surface. Nd pack in 1998 wells.	ound surface.							
3. Data on fl	ine sand thickn	ess, bentonite	chip thickn	3. Data on fine sand thickness, bentonite chip thickness, and gallons of water purged were only available for wells installed by STMI	of water purge	d were only av	ailable for wells	Installed by ST	MI.			

Table 5 Monitoring Well Slug Test Results

1

Į,

1

۲. ۲.

î: i

ļ

: : ·

.....

Location	Hydraulic Conductivity ¹ (ft/min)	Hydraulic Conductivity ¹ (cm/s)	Geologic Unit
MW-3	5.2E-02	2.7E-02	Silty Sand & Gravel
MW-3D	1.1E-03	5.4E-04	Sandstone
MW-5	1.6E-02	8.0E-03	Silty Sand & Gravel
MW-6	6.3E-02	3.2E-02	Clayey Gravel, Silty Sand, Sandstone
MW-7	5.1E-04	2.6E-04	Sandy Silt, Sand & Gravel
MW-7D	9.5E-02	4.8E-02	Silty Sand & Gravel
MW-9	1.6E-03	8.3E-04	Silt, Silty Sand, Sandstone
MW-10	1.2E-03	6.2E-04	Silty Sand, Sandstone
MW-10D	7.9E-04	4.0E-04	Sandstone
MW-12	1.2E-01	6.2E-02	Sand
MW-13	3.5E-02	1.8E-02	Clayey Sand & Gravel

1 Bouwer and Rice (1976) analysis method.

Natural Resource Technology, Inc.

Table 6

Leachate and Groundwater Concentration Results from Direct-Push Samples Compared to Ash and Coal Thickness

	Thic	kness			Co	ncentrat	ion		
	ash	coat	Boron	Mn	Iron	Nickel	pН	Sulfate	TDS
Illinois Class I GW Standard	n/a	n/a	2	0.15	5.0	0.10	6.5-9.0	400	1200
Units	ft	ft	mg/L	mg/L	mg/L	mg/L	s.u.	mg/L	mg/L
Ash Leachate									
Lined Ash Impoundment									
LP-1	>7		77	0.01	<0.02	0.01	25100	7.97	013
LP-2	>8	-	1572	0.01	<0.02	0.01	3.2.2	2990	23:0
LAP	-	-	5.2	0.01	0.80	0.03	8.9	315	594
Former Ash Laydown Area									
GP-2	19	-	- 10-1	1245	5/23	0.03	6.8	F-25	2220 3
P2P			0.3	0.02	0.04	<0.020	6.9	67	148
Unlined Ash Impoundment									
GP-20	19	-		2.608	<0.02	0.01	7.7	344	1096
GP-21	23	-		s: 5,10−	0.09	0.01	7.3		10
GP-23	31	~	30.2	230	0.40	<0.005	7.6	5-9257-	2450.7
UAP	-	-	2.2	0.18	<0.02	0.12	8.0	208	518
Groundwater									
Former Ash Laydown Area			_						
GP-3	5	1	22	2,0)	0.34	0.09		4.00 (-	11501
GP-4	-	-	- 20 J	- 300	2.00	0.09		1.20	2000
P2P			0.3	0.02	0.04	<0.02	6.9	67	148
Lined Ash Impoundment									
GP-5	-	0.1			0.05	0.16	5. S. S. S.	575	Solicit
GP-6		0.3	1.5	1602	0.03	0.06	ST 5-	398	922
GP-7		-	0.4	COJ/S	0.12	0.01		71	214
Coal Pile Storage Area									
GP-9			0.9		0.06	0.01	6.8	357	942
GP-10		2.5	1. S. C. Z.	2576	3:00-	- <i>52</i> 1		47 <u>4</u> 791	100.0
GP-11	-	1.5	1.5	scimi.	POLITY	1.2.30		1.71	150.0
GP-12	-	0.8	1.2	<u>.</u>		: <u>0</u> :20	- 55 p	077	
СҮР		-	0.9	0.40	.139	0.36	3.2	603	842
Areas South of Plant Site									
GP-13	-	-	0.2	0.01	< 0 .02	<0.005	7.5	104	716
GP-14	-	-	0.1		0.13	0.014	8.0	52	900
GP-15		~	0.3	0.01	0.03	<0.005	7.6	125	884
GP-16	-	-	0.2	0.01	<0.02	<0.005	7.4	104	957
GP-17			0.3	0.10	<0.02	<0.005	7.6	83	692
GP-18		-	0.3	0.01	<0.02	<0.005	7.4	83	742

Shaded concentrations equal/exceed Class I groundwater standard.

Locations GP-1, GP-8, GP-19, and GP-22 were not sampled.

Pond samples (NAP, P2P, OAP, and CYP), collected 4/29-30/99, are shown for reference.

Pond sample concentrations exceeding Class I groundwater standard are shown in bold.

Mn = manganese

ķ.

TDS = total dissolved solids

Natural Resource Technology, Inc.

Table 7

Groundwater Concentration Results from Monitoring Wells Compared to Ash and Coal Thickness

· · · · ·	Thic	kness	(Concentratio	on (Uppe	er 95 th Perce	entile Pred	liction Limi	t)
-	ash	coat	Boron	Mn	Iron	Nickel	рН	Sulfate	TDS
IL Class I GW Standard	n/a	n/a	2	0.15	5.0	0.10	6.5-9.0	400	1200
Units	ft	ft	mg/L	mg/L	mg/L	mg/L	s.u.	mg/L	mg/L
Upgradient									
MW-1	-		0.2	10 30	0.11	0.02	7.7	124	302
MW-10	~		0.1	0.10	0.07	0.03	7.9	32	334
MW-10D		-	0.1	0.5	0.15	0.01	8.4	34	262
Former Ash Laydown Area									
MW-3	~-	0.4	777	12.07	0.03	0.06	7.0	1623	<u>⊶</u> .75
MW-3D			-510	-3.60-	<0.02	0.07	6.9	1-71-30	
MW-11		trace			3.07	作现全社	39	\$ 1077 C	e Si Shire
MW-12	2		0.8	O IO	0.03	0.02	7.9	218	673
MW-13		·	220	14102 -	1.01	0.55	1. A.S.	SI 157	-3.60A
P2P			0.3	0.02	0.04	<0.02	6.9	67	148
Lined Ash Impoundment				_					
MW-2				0.13	0.02	0.02	7.6	2050-)*	1.11.859
MW-4		-	0.2	<0.005	<0.02	0.02	7.7	94	426
MW-5	-	0.1	1.2	0.01	<0.02	0.02	7.6	266	622
LAP	-		5.2	0.01	0.80	0.03	8.9	315	594
Unlined Ash Impoundment									
MW-6			15.5	$2c^{-1}$	0.04	0.02	7.5	318	781
MW-7				20,23	<0.02	0.01	7.9	311	913
MW-7D	••		0.1		0.16	0.01	8.3	72	472
MW-8	-	-	(1) (Q	4. S. S. S.	0.29	0.06	7.9	65	1495
MW-9	2.2	0.8	1.0	10.2°	0.02	0.01	8.0	÷ 7/50	1.1745
UAP			2.2	0.18	<0.02	0.12	8.0	208	518

Shaded concentrations equal/exceed Class I groundwater standard.

Statistical Interval - 10/26/98 through 5/24/99

Pond samples (P2P, NAP, and OAP), collected 4/29-30/99, are shown for reference. Pond sample concentrations exceeding Class I groundwater standard are shown in bold.

Mn = manganese

and the second

;

TDS = total dissolved solids

Table 8

······

]].:

;;; | |;

: ..

Source Area Analysis

	,		·	Pot	ential Sour	ces		
· .				Ash Lay-	Unlined	Lined		
1	Coal			Down	Impound	Impound	•	Not
Well	Thickness (ft)	Coal Pile	Coal Spill	Area	ment	ment	Pipe Leak	impacted
Upgradient								
MW-1	-							
MW-10								
MW-10D								
	Laydown Area							
MW-3	0.4							
MW-3D	 .							
MW-11	trace							
MW-12								
MW-13								
l inod Ach In	npoundment						•	
MW-2			_					
MW-4								-
MW-5	0.1							
10100-5	0.1							
Unlined Ash	Impoundment							
MW-6					Ĩ			
MW-7	-						-	
MW-7D								
MW-8								
MW-9	0.8							

Natural Resource Technology, Inc.

.

APPENDIX A BORING/MONITORING WELL CONSTRUCTION LOGS

Pro	oject Na Amerei	ame/No nCIPS -	Huts	onvill	le Pla	nt 249	9.03	Boring N GP-1	0.	Start Date 8/25/98	Page 1
	iller AEC, Ir	Idianan	olis I	N		Logged Stev	by: e Mueller/ST	M		End Date 8/25/98	Depth to Water 16.8 Feet
	ring De				Diam		Surface E		Drill Metho		Northing
во	17.3 Fe	•	1	_	nches		459.8 F		Geoprol)e	3585.650
We	ll Dept	h	We	ll Dia	amete	er	TOC Elev.		Sample Me	thod	Easting
	na			na	,		па	<u> </u>	4-ft Mac	ro-Core	4366.050
	Se	1 (ft)					Desc	ription	•	llon	
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification					Well Completion	Comments
∞						ASH,	silty texture,	trace coal fra	gments,		1
\bigotimes	na	 	100		Coal Ash		gray, moist (F	-			Geoprobe boring, no well installed
	na	 5	100		SP	media coars	D, well sorted/ um-grained, q e subangular ogy, light brow	uartz, trace s sand of non-	ilt, trace quartz		
	na		100		CL	little c	CLAY, roots coarse sand to I, olive gray to	o fine suband	ular	· ·	
	па	 	75 100		SM SC	trace CLAY trace	SAND, tine- fine gravel, d EY SAND, tir fine gravel, lig	ark gray, mois ie- to medium ght gray, satu	st I-grained, rated		insufficient water, no sample collected
		20 20 				END	of Boring -	- 17.3 feet (be	orock)		
							·	·			

ĺ

į.

1

Рго	oject Na Amerer	ame/No CIPS -	Huts	onvil	le Pla	nt 249).03	Boring No GP-2	D.	Start Date 8/25/98	Page 1
	ller AEC, Ir	Idianao	olis. I	N		Logged Steve	by: e Mueller/ST	MI		End Date 8/25/98	Depth to Wate 9 Feet
	ring De				Diam		Surface El		Drill Metho		Northing
	20.0 Fe	-	1	-	nches		457.3 F	eet	Geopro	be	3753.193
We	ll Dept	h			amete		TOC Elev.		Sample Me		Easting
	na			na			na		4-ft Mac	ro-Core	4610.447
sample	Blows/6 inches	Sample Dépth (ft)	Кесоvегу (%)	Graphic Log	Classification		Desc	ription		Weil Completion	
ñ	Ĩ	Sa	Re	້ບ	ΰ					Ň	Comments
	na		87.5		Coal Ash SP	SANL	o dark gray, r , well sorted/i im-orained, qu				Geoprobe boring, n well installed
	na	5 	100			& ligh	t brown below silty texture, t	v 3.5 ft. (Fill) race coal frag coarsens belo t. (Fill)	ments		
	 na	 10	100		Coal Ash			- ,.4			
	na	 15	100		Coai	granu trace	les, coarse-gr	se sand-size ained quartz s (1/2-1"), bla	sand,		
	na		100	8-03	Ash SW-	CLAY	EY SAND & C	RAVEL, poo	dy		Groundwater sampl collected from 15-19 bgs.
		20 				coarse yellow	orange, mois	d, fine-graine	/		
		25 						·			
		 30									

.

Pro	ject Na Ameren	me/No CIPS -	Huts	onvil	le Pla	ant 249	9.03	Boring N GP-3	0.	Start Date 8/25/98	Page 1
Dri						Logged	-			End Date	Depth to Water
	AEC, In						e Mueller/ST			8/25/98	11 Feet
	ing De _l 16.0 Fe		1		Diam nche:	eter	Surface E 459.3 F		Drill Metho Geoprot		Northing 3924.268
	II Depth		ŧ		amet		TOC Elev.		Sample Me		Easting
	na	-		na			na		4-ft Mac		4092.856
		<u> </u>									
	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	ription		Well Completion	
_											Comments
X		L _		°	SM	L damp	(Fill)				
X	na		100		Coal Ash	ft. (Fi	silty texture,)	olive gray, we	t below 3		Geoprobe boring, no well installed
憥											
X	ла		100), well sorted/	rounded, fine	- to		×
X	Па		100		SP	mediu moist	um-grained, q	uartz, light bro	own,		
X					Coal	COAL	, sand/gravel	size, black, o	lamp		
X		L _				(Fill) SANI), well sorted/	rounded, fine	- to		
X	na	10	100			medit satura	um-grained, q ated below 11	uanz, light bri ft.	own,		
X					SP						
Ŕ											
X			100								Groundwater sample collected from 12-16
X	na	15	100		sw-						bgs.
X				0.0°	GW	L medit) & GRAVEL, um-grained, q	uartz sand.	-		
						fine-g	rained suban	gular gravel, i	ight		-
						END	OF BORING	- 16.0 feet (Be	drock)		
		20									
	1										
		30									
	•										

Pro	oject Na Ameren	me/No CIPS -	Huts	onvil	le Pla	int 249	9.03	Boring N GP-4	0.	Start Date 8/25/98	Page 1
Dri	ller					Logged	by:			End Date	Depth to Wate
	AEC, In	dianap	olis, I	N		Stev	e Mueller/ST	MI		8/25/98	10 Feet
	ring De	-	1	-	Diam		Surface E		Drill Metho		Northing
	17.0 Fe		· · · · · · · · · · · · · · · · · · ·		nches		459.4 F		Geopro		3950.707
	ll Depth	ו			ameto	er	TOC Elev.		Sample Me		Easting
	na	1		na	<u> </u>	····	<u>na</u>	,	4-ft Mac	cro-Core	4220.706
			ł								
		-									
	S	Sample Depth (ft)	Ì		_		Desc	ription		Well Completion	
	Iche	epti	(%)	6.0	tio					plet	
,	6 ir	Ď	Σ.	Ц С	lica					E	
andruma	Blows/6 inches	du	Recovery (%)	Graphic Log	Classification					C =	
Ĵ,	Blo	Sar	Re	ບັ	Cia					Me	Commente
~						SAM), well sorted/	rounded tine	- to		Comments
\otimes						medi	um-grained, q 10-1 ft, light b	uartz, little as	h cinder		Geoprobe boring, r
\otimes	na		68.8		00	grave	a o⊷r n, iignit b	nown, muist (,		well installed
\otimes					SP						
諁											
\otimes		- 5-	81.2			SAN), well sorted/	rounded, fine	- to	-	
\otimes	na		01.2			media ft (old	um-grained, q ground surfa	uartz, dark br	own 5.5-7 yn below		
\bigotimes						satura	ated below 10) ft.			
\bigotimes		L -									
X	na	-10	87.5		SP						
\otimes			1								
贫										[
\approx			56.2								Groundwater samp collected from 12-16
\otimes	na		50.2								bgs.
X				0	SW- GW	sorte	EY SAND & O	rse-grained s	and,	· .	
X	na	L _	100	0°0°		fine-g	rained suban	guler gravel, l	ight	ļ	
						END	OF BORING	- 17.0 feet (Be	edrock)		
		20									
				1							
		F									
.		[]									
		-30-									
		[-									

F

622----

Project Name/No. AmerenCIPS - Hutsonville Pla						Boring No. ant 249.03 GP-5			Start Date 8/26/98	Page 1		
Driller AEC, Indianapolis, IN						Logged by: Steve Mueller/STMI				End Date 8/26/98	Depth to Water 6 Feet	
Boring Depth Boring Diam						eter	Surface El 453.2 F	evation	Drill Metho Geoprol		Northing 3917.782	
11.25 Feet2.2 InchesWell DepthWell Diameter							Sample Method		Easting			
na na					•		na	4-ft Macro		ro-Core	3858.831	
sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	ription	· ·	Well Completion	Comments	
	na	 5	100	P: 9: 9: 9: 9: 9: 9: 9: 9: 9 9: 9: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10	SM SP	ft, pie 1.75 f SANL mediu coars	Y SAND, silty i ce of concrete t, brown, mois 0, well sorted/ um-grained, qu e subangular n, saturated bo	e, 1-in coal-rid st (Fill) rounded, fine uartz, trace to to subround	ch layer at		Geoprobe boring, n well installed	
	na		100	2.00 2.00 2.00 2.00 2.00	SW- GW	mediu	r SAND & GR im- to coarse fine-grained und gravel, lig OF BORING -	grained subr	ounded		Groundwater sampl collected from 7-11 bgs.	
		15 15 20					· .		•			
								.				

÷

Pro	oject Na Amerer	me/No CIPS -	- Huts	onvill	le Pla	int 249	9.03	Boring N GP-6	0.	Start Date 8/26/98	Page 1
							ogged by:			End Date	Depth to Wate
							Steve Mueller/STMI			8/26/98	· 6 Feet
Boring Depth Boring Diamet						eter Surface Elevation Drill Meth			d	Northing	
10.5 Feet 2.2 Inches									Geoprol		3981.359
Well Depth Well Diamete					amete	er TOC Elev.		Sample Method		Easting	
na na				na			4-ft Macro-Core		3754.280		
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification			ription		Well Completion	Comments
\otimes				9. o. o		SILT silty t	Y SAND, tine-	to medium-g ass 0-1/2 ft, li	rained,		
\otimes	na		62.5		SM	orave	I little coal fra	agments 2-2.2 dark brown, n	25 ft.		Geoprobe boring, n
\bigotimes				9 			-				well installed
\bigotimes		L _			SP	medi	um-grained, q	rounded, line uartz, light br	own,		
\otimes		_ 5	5- SP moist								
\otimes	na		100			SAN	SAND, poorly sorted, tine- to coarse-grained, subanguler to subround, trace to little gravel, light brown, saturated				
\otimes						trace	to little grave	, light brown,	saturated		
\mathfrak{X}					sw	Delow					Groundwater samp
\otimes	na -		100								collected from 6-10 bgs.
X						END	OF BORING	- 10.5 feet (Be	edrock)	1	-3
									•		
		<u> </u>									
		F -									
- (
		20									
		25									
		[]								•	
		30									
		┝╶┥									

: •

TSD 000245

Рго	oject Na Amerer	ame/No nCIPS -	Huts	onvil	le Pla	int 249	9.03	Boring N GP-7	0.	Start Date 8/26/98	Page 1
Driller Logged							-			End Date	Depth to Water
	AEC, Ir	dianap	olis, l	N		Steve	e Mueller/ST	MI		8/26/98	4 Feet
Boring Depth Boring Diam 18.0 Feet 2.2 Inches									Drill Metho Geoprol		Northing 4151.460
Well Depth Well Diameter					amete				Sample Me	thod	Easting
па па						па -			4-ft Mac	ro-Core	3511.572
ole	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	ription	Weil Completion		
Sample	Blow	Sam	Reco	Grap	Clas					Well	Comments
	па		75	9 9 9 9 9 9 9	SM SP	silty to grave SANL	SAND, fine- opsoil with gra- l, dark brown D, well sorted/ um-grained, q	ass 0-1/2 ft, li , moist (Fill) rounded, fine		Geoprobe boring, n well installed	
	na		50			SAN	D, poorly sorte e-grained, su to little gravel				
	ла	- 10-	100		sw						Groundwater sampl collected from 6-10 bgs.
	na	 15	100					estiff to bard			
×	na	 	100		ML	nonpl coars moist SANL	EY SILT, ver astic, trace ar e sand to fine DSTONE, fine a, light green OF BORING	ngular to suba gravel, olive -grained, qua	angular gray, rtz,		
		25 									
		 30									

ļ

.

4	Ameren	me/No. CIPS -	Huts	onvill	e Pla	nt 249	9.03	Boring N GP-8	.	Start Date 8/26/98	Page 1
Dril	ller					Logged	by:			End Date	Depth to Water
	AEC, In	dianap	olis, l	N		Steve	e Mueller/ST	ГМІ	·	8/26/98	Est. 4 Feet
	ring De 16.0 Fe		1	-	Diam nches		Surface E 451.3 I		Drill Metho Geoprol		Northing 4262.600
	ll Depth na	1		ll Dia na	mete	er	TOC Elev na	•	Sample Me 2-ft split		Easting 3380.239
	<u> </u>					[2100		
Althibo	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Deso	cription		Well Completion	Comments
$\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}{\overset{\times}$	na		100	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ѕм	silty t grave	opsoil with g I, dark browr	- to medium-g rass 0-3/4 ft, li n, moist (Fill)	ttle		Geoprobe boring, n well installed
	ла		100		ML	trace (topso SILT) vertic	coal particle oil) 7 CLAY, stiff, al roots, little	nt stem fragm s at top, black, medium plast to some medi			
	112				CL	coars mottle estim	rtical roots, little to some medium to arse sand, frace subangular fine gravel, ottled light brown & gray, moist, timated water level at 4 ft.				
	na		100			coars), poorly sort e-grained, su to little grave	ed, fine- to ibanguler to si il, light brown,	ubround, saturated		
X	na		100		sw						No groundwater sam collected; geology boring only
8				2727	GL	sands	stone pebble,	medium plast light to green - 16.0 feet (Be	ish gray,		
		20 20									

Pro	oject Na Amerer	me/No CIPS -	Huts	onvill	e Pla	int 249	9.03	Boring No GP-9	D.	Start Date 8/26/98	Page 1
	ller AEC, Ir	ndianap	olis, I			Logged Stev	by: e Mueller/ST			End Date 8/26/98	Depth to Water 7 Feet
Во	ring De 21.0 Fe	pth	Во	ring l	Diam nches		Surface El 453.4 F		Drill Metho Geoprol		Northing 4306.991
We	ll Depti na	_	We		met		TOC Elev. na		Sample Me 4-ft Mac	thod	Easting 4990.027
						· · · ·	<u>.</u>				
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	ription	Well Completion	Comments	
~~~		ļ	[	_	ML	<u> </u>	vegetated wil	h grass brow			Comments
	na		50		SP	(Tops SANI medi fragm	soil) D, well sorted/ um-grained, qu nents at top, tr n, moist	rounded, fine-	- to bal		Geoprobe boring, n well installed
	na		56.2		Эг		), poorly sorte				
	na		100			COALS	se-grained, sul to little gravel	panguler to su	bround, saturated		Groundwater sampl collected from 8-12 bgs.
	na	  15	100		sw						
	na		100								. ·
×	na		100			END	OF BORING	21.0 feet (Be	drock)		

 $\hat{}$ 

. ا

## TSD 000248

L---

- -

FIG	oject Na Ameren	me/No CIPS -	Huts	onvil	e Pla	int 249	9.03	Boring N GP-10	<b>0.</b>	Start Date 8/26/98	Page 1
Dri						Logged				End Date	Depth to Wat
_	AEC, In		<u> </u>				e Mueller/STN			8/26/98	6 Feet
	ring Dej 14.25 F			-	Diam nches		Surface El 453.8 Fe		Drill Metho Geopro		Northing 4778.861
	II Depth				mete		TOC Elev.	Sample Metho		ethod	Easting
	na .		ł –	na			na		4-ft Mad	cro-Core	4700.947
9	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification			ription		Well Completion	· · ·
Sample	Blows	Sampl	Recov	Graph	Classi		·		lamo	Well C	Comments
$\bigotimes$	na		100		Coal	(Fill) Sani	L, sand/gravel	ounded, fine	-grained.		Geoprobe boring, well installed
	na		75		SP	hsun l	z, some silt 2. ated below 6 fi	5-3.5 ft. liaht	brown,		
	na	 - 10 	50		sw	coars trace medi	D, poorly sorte e-grained, sub to little gravel, um to coarse s n, saturated	anguler to se orade to we	ubround, Il sorted 3 ft, light		Groundwater sam collected from 8-1: bgs.
8	na	  15	100			END	of Boring -	14.25 leet (E	Bedrock)	-	
		20						-			
		 25									

[

7

L

<u>і</u>, ч

Pro	oject Na Ameren	me/No	Huts	onvill	le Pia	nt 249	0.03	Boring N GP-11	0.	Start Date 8/26/98	Page 1
	ller					Logged				End Date	Depth to Water
_	AEC, In						e Mueller/ST			8/26/98	5 Feet
	ring De	•	1	-	Diam		Surface E		Drill Metho		Northing
_	13.0 Fe				nches		452.5 F		Geopro		4534.018
	ll Dept	ָר			amete	er .	TOC Elev. na		Sample Mo 4-ft Mac		Easting 4398.796
	na	Т		na 			110	<i></i>			4550.150
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	ription		Well Completion	Comments
$\bigotimes$					<b>C a a i</b>		, sand/grave	size, black, o	lamp		
$\bigotimes$	na		87.5	P. 9 9 P	Coal SM	SILL	z, trace coars	to medium-g e-grained, ligi	nt brown,	-	Geoprobe boring, n well installed
	na	 5 	68.8	¢	SP	satura SANE coars	um-grained, q ated below 5 f ), poorly sorte e-grained, su	rounded, fine uartz, light bro t. d, fine- to banguler to so , light brown,	own,		
	na		100		sw						Groundwater sampl collected from 6-10 bgs.
X	na		100			END	of Boring -	- 13.0 feet (Be	edrock)		
		20									
		25									

2 . . ÷ • ١ 2 ÷ ļ ۰. ÷ • ŀ 1 ۰ ۱

ş.,

÷

i

....

.

Pro	oje <mark>ct N</mark> a Amerer	me/No	Huts	onvil	le Pla	nt 249	9.03	Boring No GP-12	D.	Start Date 8/27/98	Page 1	
Dri	ller					Logged	by:			End Date	Depth to Wate	
	AEC, In	dianap	olis, I	N	•	Stev	e Mueller/STI	MI		8/27/98	4 Feet	
Bo	ring De	pth	Bo	ring	Diam	eter	Surface El	evation	Drill Metho	d	Northing	
	9.5 Fee	t		2.2 li	nches	;	450.8 F	eet	Geoprot		4324.544	
We	II Depti	n	We	ll Dia	amete	er	TOC Elev.		Sample Me	I	Easting	
	na			na			na	<u> </u>	4-ft Mac	ro-Core	4346.394	
	Sa	h (ft)			E		Desci	ription		tion		
Sample	Blows/6 Inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification					Weil Completion		
<i>"</i>			-		Ŭ						Comments	
	na		62.5		Coal	- pile n	L, silty texture, unoff sediment D, well sorted/r edium-grained se-grained belo ated and pale	) ounded qua	rtz tine-		Geoprobe boring, n well installed	
$\bigotimes$	па		50		SP						Groundwater sampl collected from 5-9 f bgs.	
×	na	 10 	100			END	OF BORING -	9.5 feet (Bec	frock)			
		15   			•							
		20   										

Pro	oject Na Amerer	me/No CIPS -	Huts	onvill	le Pla	nt 249	9.03	Boring N GP-13	0.	Start Date 8/27/98	Page
Dri	ller					Logged	-	•••		End Date	Depth to Wate
	AEC, In	dianap	_				e Mueller/S	TMI		8/27/98	4 Feet
Bo	ring De	pth	Bo	ring	Diam	eter	Surface	Elevation	Drill Metho	ođ	Northing
	10.0 Fe	et			nches		447.0		Geopro		2693.143
We	II Depti	า	We	ll Dia	amete	er '	TOC Elev	<b>/.</b>	Sample Me	1	Easting
	na			na			na		4-ft Mac	ro-Core	3353.985
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Des	scription		Well Completion	Comments
xx				htti			sandy, clay	rey, trace to littl	e gravel,		
	na		50		ML	(Tõp	soil)		n, moist		Geoprobe boring, r well installed
X		5-	1			SAN	D, poorly so	ted, fine- to subanguler to s	ubround	1	
$\bigotimes$	ла		62.5		SP	trace	to little grav	subanguler to sizel, light brown,	saturated		
$\bigotimes$											
*						CLAY	EY SILT, VE	ery stiff to hard,		-	Groundwater samp
8	na	L _	100		ML	trace	annular to s	ubangular coa	y stiff to hard, ot/stem fragments, bangular coarse sand		collected from 5-9
\$X		10	1	Ш		to fin	e gravel, gre	enish to olive g	gray,		bgs.
			{			END	OF BORING	5 - 10.0 feet (Be	edrock)		
										1	
			1								
			[ · ]								
1					ľ						
		L									
		L -									
		20									
								·			
		┝ -								}	
		25									
(											
							• •				
		L -									

.

٠,

•~

٠,

ر

**1**....

7

ł

Ì

1

# TSD 000252

× .

Pro	j <b>ect Na</b> Ameren	me/No CIPS -	Huts	onvill	e Pla	int 249	).03 ·	Boring No GP-14		Start Date 8/27/98	Page 1
Dril						Logged				End Date	Depth to Water
_	AEC, In			_			e Mueller/STI		Drill Metho	8/27/98	Est. 10 Feet
	ing Dej 40.0 Fe			-	Diam nches		Surface El 439.9 F		Geoprot		• Northing 1104.830
_	I Depth		L		amete		TOC Elev.		Sample Me		Easting
	na			па			na		4-ft Mac		5752.447
	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desci	ription		Well Completion	Comments
XX				TTT		CLAY	EY SILT, incr	easing day c	ontent		
×	na .	 	87.5			medi	lepth from trac um plasticity, s , brown, satur	tiff above 10	ft to soft		Geoprobe boring, n well installed
	na		87.5								
XXX	na	 	100		ML						
	na		100								
	na	 	100								
				•		increa -25 f	e sampler poin ased resistanc t and ~30 ft, bu 2-ft discrete s	e to penetrati .t no soil reco	ion at		
X	па	 25 	0								
8		 30 									Partial groundwate sample (-50% volur collected from 28-32 bgs.

the state and the state and the second state has

. |

) :-

·.

	o <b>ject Na</b> Ameren	CIPS -	Huts	onvil	le Pla	nt 249	9.03	Boring No. GP-15		Start Date 8/27/98	Page 1
	iller					Logged				End Date	Depth to Wate
	AEC, In		_				e Mueller/STN			8/27/98	Est. 4 Feet
Bo	ring Dep		1	-	Diam		Surface El	•	Drill Metho		Northing
	18.0 Fe	_		_	nches		449.8 Fe	eet	Geoprol		2790.223
vve	II Depth	1			amete	er	TOC Elev.		Sample Me		Easting
	na	,		na			na	·	4-ft Mac	ro-Core	3212.610
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descr	iption		Well Completion	Comments
	na				ML/ SM		7SILT material	s similar to G	P-13;		Geoprobe boring, n well installed. Groundwater sampi collected from 8-12 bgs.
	••	15 			ML/ CL	penet	OF BORING -				
		25   30 30  									

Ľ ŀ į | | | t . . Ì . | . 

•

h

	Ameren	me/No CIPS -	Huts	onvil	i le Pla	nt 249	9.03	Boring No GP-16	<b>D.</b>	Start Date 8/27/98	Page
Dri	ller					Logged				End Date	Depth to Water
	AEC, In	dianapo					e Mueller/STI			8/27/98	Est. 4 Feet
Bo	ring De	pth	Bo	ring	Diam	eter	Surface El		Drill Metho		Northing
	28.0 Fe			_	nches		453.7 F	eet	Geoprot		2886.789
We	II Depth	t	We	ll Dia	amete	er	TOC Elev.		Sample Me		Easting
	na			na			na		4-ft Mac	ro-Core	3064.602
										х. Э. Э.	
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desci	ription		Well Completion	Comments
				°			SOIL/SAND/SI	T materials	similar to		
	na		ฑร	ាលកិត្តសំណើង នៃខ្លាំង សំពាន់ទីសំណើមការសំព័ន៍ទីសំណើមការសំពេង នៅសំណើង សំពេង និងសំណើង សំពេង នៅសំពោះ នៅសំពេង នៅសំព សំពើសំពីសំពេង នៅសំពាង នាម នាម នៅសំពាង នៅសំពាង នៅសំពាង នៅសំពោង នៅសំពាង នៅសំពោះ លោក សំពាង នៅសំពោះ នៅសំពោះ នៅសំពោ	ML/ SM						Geoprobe boring, n well installed. Groundwater samp collected from 8-12 bgs.
					ML/ CL	base pene	VSILT materia d on increased tration.	I resistance to		· · ·	• •

ì

ľ

[;

۲ ا

<u>|</u>.

Ĩ

ľ

1

. .

Project N Amere	lame/No enCIPS -	Huts	onvill	e Plar	nt 249	9.03	Boring N GP-17	0.	Start Date 8/27/98	Page 1
Driller					Logged	by:			End Date	Depth to Water
AEC,	Indianap	olis, l	N		Steve	e Mueller/ST	ГМІ		8/27/98	Est. 4 Feet
Boring D				Diame	eter	Surface E	levation	Drill Metho	d	Northing
12.0 F	eet		2.2 lr	nches		445.6	Feet	Geoprot	be	2582.997
Well Dep	th	We	II Dia	mete	r	TOC Elev		Sample Me	thod	Easting
na .			na			na		4-ft Mac	ro-Core	3541.335
Sample Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification			cription		Well Completion	Comments
		ns		ML/ SM	GP-1	3. //SILT mater d on increase tration.	Tals similar to ed resistance f - 12.0 feet (B	GP-13; lo		Geoprobe boring, ne well installed. Groundwater sampl collected from 4-8 ft bgs.

Project M Amere	lame/No enCIPS -	Huts	onvil	le Pla	nt 249.	03	Boring N GP-18	<b>lo.</b> 3	Start Date 8/27/98	Page 1
Driller		alia I		_	Logged b	y: Mueller/STN	A1		End Date 8/27/98	Depth to Water Est. 4 Feet
	ndianap	_				Surface El		Drill Metho	1	
Boring D 23.75			ring 2.2 li		1	446.0 Fe		Geoprot	be	Northing 2488.262
Well Dep	th	We	ll Dia	amete	er	TOC Elev.		Sample Me		Easting
na			na	T	l	na		4-ft Mac	ro-Core	3677.480
Sample Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descr	iption		Well Completion	Comments
			е. 		TOPSO	DIL/SAND/SI	T materials	similar to		
na		ns		ML/ SM CL	based penetra	SILT material on increased ation.	resistance	10		Geoprobe boring, n well installed. Groundwater sampl collected from 8-12 bgs.

Ţ.

۲ رار

ļ,

Ĵ,

|-

ľ

ſ

1 1

ŀ

; ]

ļ

Pro	oject Na Ameren	me/No CIPS -	Huts	onvill	e Pla	nt 249	9.03	Boring N GP-19	0.	Start Date 8/27/98	Page 1
Dri	ller					Logged	by:	-		End Date	Depth to Water
	AEC, Inc	dianap	olis, l	N		Stev	e Mueller/ST	MI		8/27/98	Est. 10 Feet
Во	ring Dep	oth	Bo	ring	Diam	eter	Surface E	levation	Drill Metho	d	Northing
	40.0 Fee	et		2.2 la	nches	5	Feet		Geoprol	be	
We	II Depth		We	ll Dia	amete	ər	TOC Elev.	,	Sample Me	thod	Easting
	na			na			na		not sam	pled	
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification			ription	20-14	Well Completion	Comments
	na		ns		ML/ CL	Incre ~18 f collec yield.	t. Attempted tion at 20-24	ce to penetral groundwater ft and 28-32	tion at sample ft., but no		Geoprobe boring, no well installed. No groundwater samples insuffient yield.
						END	OFBORING	- 32.0 feet		-	

_----

Pro	oject Na Amerer	me/No CIPS -	Huts	onvil	le Pla	nt 249	9.03	Boring N GP-20	0.	Start Date 8/28/98	
Dri	ller					Logged	by:	· · · · · ·		End Date	Depth to Wate
	AEC, Ir	ndianap	olis, I	N		Stev	e Mueller/STI	MI		8/28/98	3 Feet
	ring De 21.0 Fe	•		-	Diam nches		Surface El 450.7 F		Drill Metho Geoprol		Northing 3805.064
	ll Depti				amete		TOC Elev.		Sample Me	thod	Easting
	na			na			na		4-ft Mac	ro-Core	5099.419
sampie	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	ription		Well Completion	Comments
$\propto$	<u>-</u>					ASH,	silty texture, s	oft, dark gray	y, ~3/4-ft		
$\bigotimes$	na		100			layer belov	of cinder grav v 3 ft (Fill)	el at 9 ft, sati	urated .		Geoprobe boring, r well installed
X											ļ
×		- 5-	400								
X	na		100								
$\otimes$											
$\bigotimes$					Coal						
$\bigotimes$	na	10	100		Ash						
X											]
떴											
$\otimes$										-	
X	na		50								
8		-15-									]
X											Groundwater samp
X	na		100								collected from 17-21
X		L _		7777		SILT	Y CLAY, trace	coarse sand	trace		bgs.
X	na		100		CL	fine s	ubanular to su um plasticity, r	ibround grave	el. stiff.		
XX	114		100			🔨 🐁 🔪	nt gray, moist			•	
		<u> </u> –				END	OF BORING -	21.0 1001 (De			
- 1											}
		-23									
		⊢ –									
		30									
									_		

ī S

ï

i

1000

-

!

**{** .

Pro	ject Na Ameren	me/No	Huts	onvil	le Pla	nt 249	0.03	Boring No GP-21	<b>).</b>	Start Date 8/28/98	Page 1
Dril	ler					Logged	by:			End Date	Depth to Water
	AEC, In	dianap	olis, l	N		Steve	e Mueller/ST	MI		8/28/98	3 Feet
	ring De		1	-	Diam		Surface E		Drill Metho		Northing
	36.5 Fe		_	_	nches		450.7 F		Geoprot		3593.599
	ii Depti	3			amete	er	TOC Elev.		Sample Me		Easting
	na	·		na	·		na		4-ft Mac	ro-Core	5239.017
sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification			ription		Weil Completion	Comments
$\boxtimes$						ASH,	silly lexture, saturated belo	soft, dark			
$\bowtie$	na		100			9.07,					Geoprobe boring, n
$\bowtie$		L -									well installed
X		L _		1. 1 1							•
$\otimes$		5		:							
$\bigotimes$	na		50								
$\bowtie$				113 112							
X				· .					1		
$\bigotimes$			0	· ·	•						
×	na		0	1. 	Coal						
X				•	Ash						
8				2							
$\otimes$	na		0								
X											
憥				•. •.							
83			0	÷							Groundwater samp collected from 18-22
$\otimes$	na	<u> </u>	U								bgs.
$\bigotimes$				1							
$\otimes$		L _		$\{ i_{i_1},$							
83	na		50								
$\otimes$				1///		SILT	CLAY, stift,	medium plast	icity,		
綴				V///		brown	n, moist				
$\otimes$		25		V//	CL						
$\bigotimes$	na		50								
$\otimes$				V///							
××				V///		- SILT	CLAY (estin ance to penel	nated based of tration)	n		
				V//		100101	2.100 to point				
						END	OF BORING	- 36.5 feet (Be	edrock)		
				V///	CL						
					1						
		1		x///	4						

ļ

[.

1

j

i,

Рго	oject Na Ameren	me/No CIPS -	Huts	onvil	ie Pla	nt 249	9.03	Boring No GP-22	0.	Start Date 8/28/98	Page 1
Dril						Logged		•		End Date	Depth to Wate
	AEC, In						e Mueller/ST			8/28/98	>11.5 Feet
	ring De 11.5 Fe			-	Diam nches		Surface E 458.7 F		Drill Metho Geoprol		Northing 4373.353
	II Dept				amete		TOC Elev.		Sample Me		Easting
	na		ſ	na			na		4-ft Mac		5285.420
Sample	Blows/6 Inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification			ription		Well Completion	Comments
$\otimes$			_		ML	Grass	DY SILT, fine , brown, mois	sand, vegetati t (Topsoil)	ed with		
$\otimes$	па		81.2			Ū			viure		Geoprobe boring, n well installed
$\bigotimes$						ft, dai	fine cinder gr rk gray, moist	ne-grained te avel, coarsen with wet inter	s below 8 val 6-7 ft		
$\bigotimes$		5-			Coal Ash	(Fill)					
$\otimes$	na		100		7.911						
$\otimes$											
$\bigotimes$					Coal	ASH, some	coarse sand silt, several	to fine gravel 1/4-5/8" pyrite	size, pebbles		No groundwater sam
$\bigotimes$	na	10	100		Ash						collected; no water sampler.
X						END	OF BORING	- 11.5 feel (Be	edrock)		
		20									
		25									
											۰.
		30									

ľ

|. | i

[`.

F. I.

| |.

1

٠

	ject Na Ameren			onvill	e Pla	nt 249	9.03	Boring N GP-23		Start Date 8/28/98	Page
Dri	ler					Logged	by:			End Date	Depth to Water
	ÀEC, In	dianap	olis, I	N		Steve	e Mueller/S'I	М		8/28/98	7 Feet
Boi	ring De	pth	Bo	ring l	Diam	eter	Surface E	levation	Drill Metho	d	Northing
	34.0 Fe			2.2 la	nches		460.7 1		Geoprot		4203.035
We	II Depth	ו	We	II Dia	mete	<b>r</b> · · ·	TOC Elev.	• . •	Sample Me		Easting
	na	T	ļ	na	······		na		4-ft Mac	ro-Core	5272.661
oainpie	Blows/6 Inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	cription		Well Completion	
3	ā	Sa	Re	G	ö		•			Ň	Comments
88				9	SM	SILT	SAND, fine	grained, quar	tz, trace		
	na		93.8			grass ASH, trace	, yellow oran silty to very f	and, vegetated ge, moist (Fill) ine-grained te l up to 1/2", cc gray, wet bel	exture,		Geoprobe boring, n well installed
	na		100		Coal Ash						
	na		100								
	na	  15	100	:	Coal	ASH, some		to fine gravel	size,		
	na		100		Ash						Groundwater sampl collected from 18-22 bgs.
XXXXXXX	па	20  	100			ASH	green, moist same as 13.	medium plast 5-19.8 ft). Inc tration at 31 ft	reased		
		25    30			Coat Ash						Jammed liner in Mac Core sampler; used 1 I.D. by 2-ft, piston-ti discrete sampler to collect soil sample ne bedrock surface.
XX	na		100		SP	fine-g browr olive bottor	rained, quart n, saturated. green, indica n.	softed/founde z, yellow oran Top 2-3" were ting proximity - 34.0 teet (Be	ge to light e light of ash		

Į.

いい

. .

i

· _ _

Pro	oject Na Ameren	me/No CIPS -	Huts	onvill	le Pla	nt 249	0.03	Boring N LP-1	<b>o.</b>	Start Date 8/28/98	Page 1
Dri	ller STMI					Logged Steve	by: e Mueller/ST	MI		End Date 8/28/98	Depth to Water 0.25 Feet
	ring De	oth	Во	ring	Diam		Surface E		Drill Metho		Northing
	7.3 Fee				Inche		465.9 F	eet	Hand-dr	iven	4405.098
<u> </u>	II Depth				amete		TOC Elev.	. Sample Method			Easting
	na ·			na			na		not sam		3961.179
sampie	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desc	ription		Weil Completion	Comments
			-	• •		ASH,	silty to very f	ne-grained te	exture, wet		· · · · · · · · · · · · · · · · · · ·
	na		na		Coal Ash		o.25 ft (Fiíi) of Boring	- 7.3 feet			Temporary well-poin with filter sock installe leachate sample collected from 3.3-7.3
		 	-								
		20-            									Removed well point 8/28/98

ſ

j

1

Project Ame	Name/No renCIPS -	Huts	onvil	le Pla	int 249	9.03	Boring N LP-2	10.	Start Date 8/28/98	Page 1
Driller					Logged			· _	End Date	Depth to Water
STM						e Mueller/ST			8/28/98	0.25 Feet
Boring				Diam		Surface E		Drill Metho		Northing
8.0 F				Inche		466.24		Hand-d		4502.022
Well De	pth	We	ell Dia	amete	er	TOC Elev.		Sample Me		Easting
na			na			na		not sam	pled	3815.305
sample Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		·	ription		Well Completion	Comments
					ASH,	silty to very fi 0.25 ft (Fill)	ne-grained to	exture, wet		
na		na		Coal Ash		of Boring -				Temporary well-poin with filter sock installe leachate sample collected from 4.0-8.0 Removed well point 8/28/98.

,

ŗ.

ľ

[

Pro	oject Na Ameren	me/No CIPS -	Huts	onvil	le	249	)-3	Boring No MW-30			rt Date 10/6/98	Page 1
Dri	ller	_				Logged	by:			En	d Date	Depth to Water
_	AEC, In		<u> </u>				e Mueller/STI				10/6/98	~6 Feet
	ring Dep		1	ring		eter	Surface El		Drill Met			Northing
	25.5 Fe			8* In II Dia			453.7 F	eet	Sample N	ir-rotar		3860.230 Easting
	25.1 Fe		1	2-in		er	455.28	Feet		olit-spo		3952.034
			1-	<u></u>			100.20		2 10. 0			
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desci	ription			Well Completion	Comments
$\boxtimes$	1, 2, 3,		75	hm		SAN	or SILT, little i	ine-grained g	ravel, ff_dark			5-ft by 4-in square sto stick-up casing to ~1
$\bigotimes$	6		13		ML	brown	, moist (topso	il)	n, dan	5 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	•	ft; concrete seal 0-3
$\bigotimes$	4, 4, 6. 4		88			SANE	, well sorted/r	ounded, fine-	grained, lium	-	-	
$\bigotimes$					SP	browr	, saturated be	elow 6 ft				•
$\otimes$	1, 2, 3, 5	5	75		SP							
X	2, 2, 2,											
$\otimes$	10		63	0.0°	sw-	SILTY	SAND & GR	AVEL, poorly	sorted, ed			
$\boxtimes$	2, 2, 3, 5		50		GW	subar	igular to subro ray, saturated	ound gravel, le	oose,			Bentonite/cement gro 3-16 ft; 1/4-in benton
$\bigotimes$	5	10				ngrit g	idy, saluialeu					chips 16-17 ft.
ł				•••••		SANL	STONE, fine-	grained, quar	12			
		15								,		Sch. 40 PVC casing
					•					2042	0000	flush-threaded to 0.01 factory-slotted PVC
- 1					Ss							screen 20.1-25.1 ft; 1
Í												fine silica sand 17-18 #5 silica sand pack 1
		20										25.5 ft.
		 25										* 4-in diam. boreho
				·····		END	of Boring -	25.5 feet			<u> </u>	drilled 16-25.5 ft usin air-hammer.
												an-nannner.
		30								}		

ľ

Pro	ject Na Ameren	me/No CIPS -	Huts	onvil	le [:]	249	<del>.</del>	Boring No MW-7			Date )/5/98	Page 1
Dri	ler					Logged	by:			End	Date	Depth to Water
	AEC, In	dianap	olis, I	N		Steve	e Mueller/STI	<u>vi</u>		1(	0/5/98	~10 Feet
	ing Dep		1	-	Diam	eter	Surface El 437.5 F		Drill Metho HSA	bc		Northing 3175.915
_	45.0 Fee			8 Inc	amete		TOC Elev.		Sample M	thad	_	Easting
	ll Depth 44.3 Fee			2-in		er	438.45	Foot		it-spoon		5676.110
	+4.3 Fee			2-41			. 400.401		2-11. Spi			0070.110
Sample	Blows/6 inches Blows/6 inches Sample Depth (ft) Recovery (%) Graphic Log				Classification		Desci	ription				Comments
$\neg \uparrow$				hm		CLAY	EY SILT, med fibers, soft, m	ium plasticity	, trace		<b>.</b>	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1, 1, 2, 3 1, 1, 1, 1, 2		75		ML	satura	ated below 10	fl.				5-ft by 4-in square st stick-up casing to ~1 ft; concrete seal 0-3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1, 1, 2, 3	  15 	100					····· · · · · · ·				
$\overline{\mathbf{X}}$	0, 0, 1,											
~~~~	0, 0, 1, 2	20   	100		SP	fine-a	Y SAND, well s rained, quartz bove, loose, m ated	. arades from	1 clavev			Bentonito/comont or
X	3, 3, 4,		75	0-2-0-		- SILTY	SAND & GR	AVEL. well se	orted			Bentonite/cement gro 3-35 ft.
×	J					mediu coars subar	um-grained qu e sand, fine-g ngular gravel, i n, saturated	artz sand, tra rained angula	ace ar to			0.00 m
2	5, 8, 6,			0.0 9.9								
8	5,8,6, 8	30 	75					÷.,				•
				80 80 80	SP- GP							

5

•

Pro	ject Na Ameren	me/No. CIPS -	Huts	onvill	е	249	9-3	Boring No MW-70	ь. Э	Start Date 10/5/98	Page 2
Dri	ller AEC, Ind	lianan	olis I	N		Logged Steve	by: e Mueller/STN	Al		End Date 10/5/98	Depth to Water ~10 Feet
Boi	ring Dep 45.0 Fee	oth	Во		Diam		Surface Ele 437.5 Fe	evation	Drill Metho HSA	d	Northing 3175.915
	I Depth				imete		TOC Elev.		Sample Me	thod	Easting
	44.3 Fee			2-in l		- ·	438.45	eet	2-ft. spli		5676.110
	14.0100										
Sample	Blows/6 Inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descr	iption		Well Completion	Comments
	sand heave sand heave 16, 25, 7, 11	40	0		ML	CLAY	'EY SIL1, med	ium plasticity	/, trace		Sch. 40 PVC casing flush-threaded to 0.01 factory-slotted PVC screen 39.3-44.3 ft; f fine silica sand 35-38 #5 silica sand pack 3 45 ft.
XX						END	stiff, brown, n OF BORING -	45 feet			

Ţ

Ł

ł,

.

ļ

•

Pro	ject Na Ameren	me/No CIPS -	Huts	onvill	e	249	9-3	Boring N MW-10	o.)	Start Date 10/7/98	Page 1
Dril	ler			_		Logged	by:			End Date	Depth to Water
	AEC, In	dianap	olis. I	N			e Mueller/ST	MI		10/7/98	~2.5 Feet
_	ing Dep				Diam	eter	Surface El	evation	Drill Metho	od	Northing
	11 Feet			8 Inc			452.9 F	eet	HSA		4730:478
	I Depth		·		mete	er	TOC Elev.		Sample Me	ethod	Easting
	10.7 Fee			2-in 1			454.23			it-spoon	2559.807
	ş	(ft)					Desc	ription		lon	
Sample Sample Sample Sample Sample Concres			Recovery (%)	Graphic Log	Classification					Well Completion	Comments
4			· ·			CLAY	EY SILT, veg	etated with d	rass soft		5-ft by 4-in square ste
\bigotimes			50	ЩЦ	ML	dark	Frown to black	, moist (tops)	Dil)		stick-up casing to ~1
X						fine-a	rained, quartz	. loose, vello	wish		ft.
\bigotimes	1, 2, 2, 6		50		SP	orang	e with dark or ated below ~2	ange lamina .5 ft	(2-3 mm),		
\bigotimes	1, 2, 6,										Bentonite/cement gro
\mathbb{X}	25	5	100			en 73	SAND well	sorted/munde			0-3 ft; 1/4-in bentoni chips 3-4 ft.
X	5, 20, 63 SF					fine-a	rained, quartz	, laminated, o	lense,		
X	25, 50		63			light of the second s	gray to rust co gray below 7.5		Sch. 40 PVC casing		
مم						\ (weat	hered bedroc	k)			flush-threaded to 0.0
					Ss						factory-slotted PVC screen 5.7-10.7 ft; #
											silica sand pack 4-11
						END	of Boring -	rieet			
		15									
		20									
		25									
		30									

ļ

			onvil	le .	249	9-3				
ller		-			Logged	by:			End Date	Depth to Water
AEC, In	dianap	olis, I	N		Steve	e Mueller/STI	<u>//</u>			3 ~2.5 Feet
ring Dep	oth .	Bo	ring	Diam	eter	Surface El	evation	Drill Metho	d .	Northing
21.5 Fee	et		8 Inc	hes_			eet	HSA		4729.427
ll Depth		We	ll Dia	amete	r	TOC Elev.		Sample Me	ethod	Easting
21.3 Fee	et		2-in	I.D.		454.65	eet	see MV	/-10 log	2564.715
Blows/6 Inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desci	iption		Well Completion	Comments
			TTT	MI	CLAY	EY SILT ved	etated with o	rass.		5-ft by 4-in square ste
	 	see MW- 10		SP	soft, c SILT fine-g orang satur	dark brown to f Y SAND*, well rained, quartz je with dark or ated below ~2.	black, moist (sorted/round , loose, yellov ange lamina (5 ft	topsoit) ed, wish (2-3 mm),		stick-up casing to -2 ft. Bentonite/cement gro 0-13 ft; 1/4-in benton
				SP	SILTY fine-o	SAND", well rained, quartz	sorted/round	ed, lense.		chips 13-14 ft.
				0.	light c	ray to rust col	ored, predom	ninantly		
	10 10				SANE becor clasts	DSTONE, fine- mes medium-g s, increasingly	grained, quai rained, trace well cemente	gravel d/hard		Sch. 40 PVC casing
	 15 	drill cuts		Ss						flush-threaded to 0.01 factory-slotted PVC screen 16.3-21.3 ft; silica sand 14-15 ft; silica sand pack 15-2 ft.
	20									
50 (1")		1"			- END	of Boring -	21.5 feet			* based on MW-10 boring log
	Ameren Iler AEC, Ini 21.5 Féd Il Depth 21.3 Fed Sequences Sequence	AmerenCIPS - Iler AEC, Indianap ing Depth 21.5 Feet II Depth 21.3 Feet (1) 9%%ond 0 - - - - - - - - - - - - -	Iller AEC, Indianapolis, I ing Depth Bo 21.5 Feet We 21.3 Feet (%) 21.3 Feet (%) sequence (%) yshop (%) ysh	AmerenCIPS - Hutsonvil Iler AEC, Indianapolis, IN ing Depth Boring 21.5 Feet 8 Inc Il Depth Well Dia 21.3 Feet 2-in (1) uppth 0, 1 of 1 o	AmerenCIPS - Hutsonville Iler AEC, Indianapolis, IN ing Depth 21.5 Feet Boring Diameter 21.3 Feet 21.3 Feet 21.3 Feet 21.3 Feet 21.3 Feet 21.3 Feet 21.3 Feet 21.3 Feet 2-in I.D. Boring Diameter 2-in I.D. Borin	AmerenCIPS - Hutsonville 245 Iler Logged AEC, Indianapolis, IN Stevi ing Depth Boring Diameter 21.5 Feet 8 Inches II Depth Well Diameter 21.3 Feet 2-in I.D. ing Depth ing Diameter 21.3 Feet 2-in I.D. ing Depth ing Diameter ing Diameter ing Diameter ing Dia	AmerenCIPS - Hutsonville 249-3 Iler Logged by: Steve Mueller/STM AEC, Indianapolis, IN Steve Mueller/STM ing Depth Boring Diameter Surface Elev. 21.5 Feet 8 Inches 452.9 Fe II Depth Well Diameter TOC Elev. 21.3 Feet 2-in I.D. 454.65 F ing Depth Steve Mueller/STM Descr ing Depth Well Diameter TOC Elev. 21.3 Feet 2-in I.D. 454.65 F ing Depth Steve Mueller/STM Descr ing Steve Mueller/STM Steve Mueller/StM Steve Mueller/StM ing Steve Mueller/StM Steve Mueller/StM Steve Mueller/StM ing Steve Mueller/StM Steve Mueller/StM Steve Mueller/StM ing Steve Mueller/StM <	AmerenCIPS - Hutsonville 249-3 MW-10 Iler Logged by: Steve Mueller/STMI AEC, Indianapolis, IN Boring Diameter Surface Elevation 452.9 Feet 11 Depth Well Diameter TOC Elev. 21.3 Feet 2-in I.D. 454.65 Feet 11 Depth Well Diameter TOC Elev. 21.3 Feet 2-in I.D. 454.65 Feet 11 Depth Well Diameter CLAYEY SILT* vegetated with g soft, dark brown to black, moist (SILTY SAND*, well sorted/round fme-grained, quarz, losse, yello orange with dark orange laminated, saturated below ~2.5 ft 10 SP SILTY SAND*, well sorted/round fme-grained, quarz, losse, yello orange with dark orange laminated (weathered bedrock) 10 SP SILTY SAND*, well sorted/round fme-grained, quarz, losse, yello orange with dark orange laminated (weathered bedrock) 10 SP SILTY SAND*, mell sorted/round fme-grained, quarz, losse, yello orange with dark orange laminated (weathered bedrock) 10 SP SS 11 SS 12 SS 13 SS 14 SS 15 SS 16 SS 17 SS 18 SS 19 SS 10 SS 10 SS 11	AmerenCIPS - Hutsonville 249-3 MW-10D Iler Logged by: Steve Mueller/STMI Steve Mueller/STMI IDepth Boring Diameter Surface Elevation Drill Methods 21.5 Feet 8 Inches 452.9 Feet HSA 11 Depth Well Diameter TOC Elev. Sample Mu 21.3 Feet 2-in I.D. 454.65 Feet see MV 21.3 Feet 2-in I.D. 454.65 Feet see MV 21.3 Feet 2-in I.D. 454.65 Feet see MV 21.3 Feet 2-in I.D. CLAYEY SIL1*, vegetaled with grass, see MV 21.9 Peet 9 9 9 21.9 Peet 9 9 <	AmerenCIPS - Hutsonville 249-3 MW-10D 1077/91 lier Logged by: Steve Mueller/STMI End Date 107/91 End Date 107/91 End Date 107/91 End Date 107/91 ing Depth 12.5 Feet Boring Diameter 8 Inches Surface Elevation 452.9 Feet Drill Method HSA 11 Depth 21.5 Feet Well Diameter TOC Elev. Sample Method see MW-10 log 21.5 Feet 2-in 1.D. 454.65 Feet see MW-10 log 21.5 Feet 9.0 0.0 0.0 0.0 21.5 Feet 2-in 1.D. 454.65 Feet see MW-10 log 21.5 Feet 0.0 0.0 0.0 0.0 21.5 Feet 0.0 0.0 0.0 0.0 21.5 Feet 2-in 1.D. 454.65 Feet see MW-10 log 21.5 Feet 0.0 0.0 0.0 0.0 21.5 Feet 0.0 0.0 0.0 0.0 21.5 Feet 0.0 0.0 0.0 0.0 22.5 0.0 0.0 0.0 0.0 0.0 22.5 0.0 0.0 0.0 0.0 0.0 23.5 0.0 0.0 0.0 0.0 0.0 24.5 0.0 0.0 0.0 0.0 0.0 </td

Pro	ject Na Ameren	me/No CIPS -	Huts	onvill	e	249	-3	Boring No MW-11	o. I	Start Date 10/6/98		
Dri	ler					Logged	by:			End Date	Depth to Water	
	AEC, In	dianap	olis, l	N		Steve	e Mueller/STI	MI		10/7/98	~6 Feet	
	ing Dep				Diam	eter	Surface El	evation	Drill Metho	d	Northing	
	15.0 Fee			8 Inc	hes		443.8 F	eet	HSA		3371.329	
We	I Depth		We	II Dia	amete	er	TOC Elev.		Sample Me	ethod	Easting	
	14.5 Fee			2-in	.D.		445.45	Feet	2-ft. spli	t-spoon	4451.486	
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification			ription		Well Completion	Comments	
\bigotimes	1, 2, 3,	_	63		ML	SANI	DY SILT, little coal fragment	fine-grained g is, medium st	iff,	••	5-tt by 4-in square ste stick-up casing to ~2	
\bigotimes	4					medi	coal fragment	ist (topsoil)	aroined		ft.	
\otimes	1, 2, 6,		63		SM	quart	SAND, medi z, loose, light SAND & GR	brown, moist	e-grained,			
X	8			0.0 	SW- GW	SILT	SAND & GR	AVEL, poorly saturated	sorted,	1778 II.	Bentonite/cement gro	
\otimes	3, 5, 25, 50	5	75	•0. •0		00.10	.,				0-3 ft; 1/4-in bentoni	
\bigotimes	50			مغنوه		SAN	STONE				chips 3-4 ft.	
											Sch. 40 PVC casing flush-threaded to 0.01	
1		10			Ss	, 					factory-slotted PVC	
- (screen 4.5-14.5 ft; # silica sand pack 4-15	
	1											
[1E										
						TEND	OF BORING	-15 feet				
J												
		20								1		
		25										

ſ

Ī

ì

Ŀ

ļ

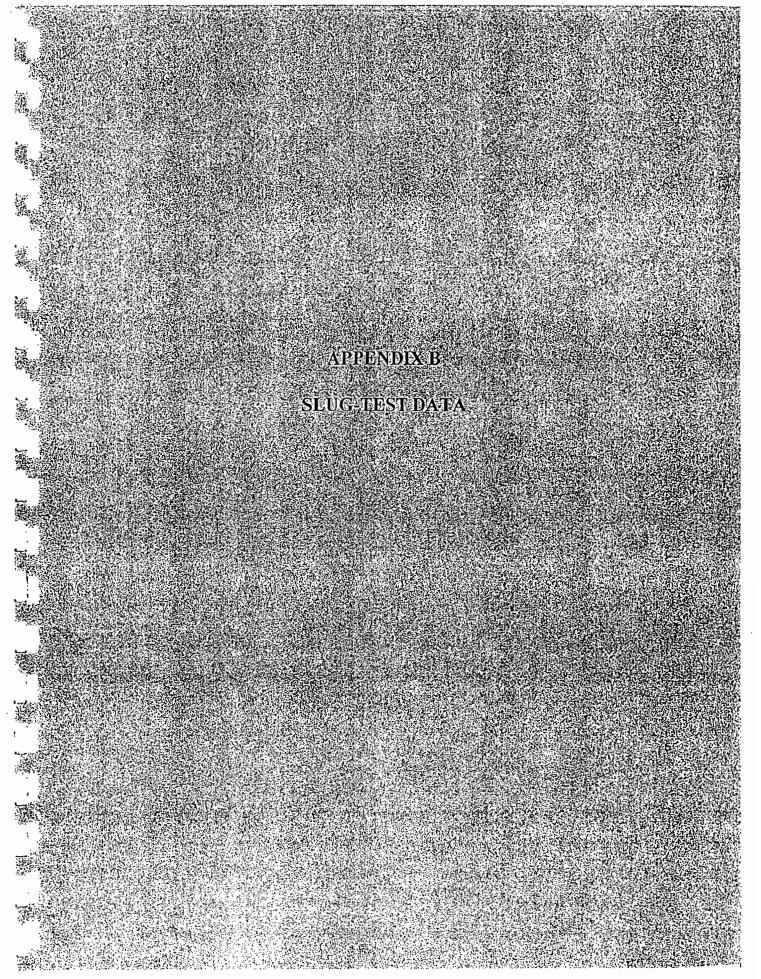
ſ

ľ

Project Name/No. AmerenCIPS - Hutsonville						249-3 Boring No. MW-12				Start Date 10/8/98		Page 1	
Driller						Logged				End Date		Depth to Water	
AEC, Indianapolis, IN						Steve Mueller/STMI				10/8/98		~12 Feet	
Boring Depth Boring Diam 17 Feet 8 Inches						455.5 Feet HS			Drill Metho HSA	A		Northing 4053.583	
Well Depth Well Diameter					amete				Sample Me		1	Easting	
16.9 Feet 2-in I.D.					.D.	456.74 Feet 2-ft. sp			it-spoon		4637.976		
Sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Desci	ription		Well Completion		Comments	
\boxtimes	1, 1, 1,		63	TTT	ML	SANL	Y SILT, little ((topsoil)	clay, soft, dar	k brown,			-tt by 4-in square ste stick-up casing to ~1.	
\bigotimes	1				Coal Ash	ASH,	silty texture, s	soft, olive gray	y, moist		,	ft.	
\otimes	2, 3, 10, 8		100		GM	SILTY	SAND & GR	AVEL, poorly	sorted,				
×	1, 1, 2,				Givi	medii SANI	m dense, ligh	t brown, mois	st (fill) -grained,				
\bigotimes	3	5	63		SP	quart	z, loose, light	brown, moist					
X	2, 2, 4,		75		57								
X	3					SANE	, poorly sorte	d, fine- to				entonite/cement gro	
\bigotimes	1, 2, 3, 2		50			coars	e-grained, sub trace fine or	pangular to su ravel, loose, li	bround, ght		0	-3.5 ft; 1/4-in benton chips 3.5-5 ft.	
X	1, 1, 1,	10	75			brown	, saturated be	elow ~12 ft					
X	2				sw								
\otimes	1, 2, 2, 3		75								fh	Sch. 40 PVC casing ush-threaded to 0.01	
\mathfrak{A}	2, 3, 3,		100									factory-slotted PVC screen 6.9-16.9 fl; #	
\otimes	4	15	100								. fu	ne silica sand 5-6 ft;	
X	10, 10, 35, 50		50	111	ML	SILT,	stiff, light brow	wn, moist	rock)		s	ilica sand pack 6-17	
Ø	35, 50					END	OF BORING -	TV IEEL (DEDI	UCK)				
		20											
		25											
	•												
		30											

1.

[.


[]]

.....

1

Project Name/No. AmerenCIPS - Hutsonville 249-3							9-3	Boring N MW-1	Start Date 10/6/98		U	
Driller Logged by:							+	· <u> </u>	End Date		Depth to Wate	
	AEC, Ir		_	_			e Mueller/STA	ЛI		10/6/	98	~7 Feet
Boring Depth Boring Diam 16.5 Feet 8 Inches						eter Surface Elevation 456.4 Feet			Drill Method HSA			Northing 3961.759
Well Depth Well Diamete				er TOC Elev. Sample M				lethod		Easting		
16.0 Feet 2-in			2-in	1.D. 458.03			Feet 2-ft. split-spoon				4241.200	
sample	Blows/6 inches	Sample Depth (ft)	Recovery (%)	Graphic Log	Classification		Descr	iption		Well Completion		
$\overline{\nabla}$				P:://:	· .		SAND, with g		dark			Comments
83	1, 2, 3, 5		25	- P P	S M	browr	a, moist (topsoi	il)	Cark	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		5-ft by 4-in square sto stick-up casing to ~2
22	5	<u> </u>		° 9 8		SAN	, well sorted/	rounded fine	- 10	- CE - CE		ft; concrete 0-3 ft.
						mediu satura	ated below ~9 (artz, light bro ft.	own,		6	
		5				• base	ed on drill cuttin oprobe GP-4	ngs and geol	ogic log			
1					SP	toi ge	opiobe GP-4					Bentonite/cement gro 3-6.3 ft; 1/4-in bentor
					5					500 B		chips 6.3-7 ft.
		 10										
$\overline{\nabla}$				0.00			EY SAND & G	RAVEL DOO	nv			
\bigotimes	1, 2, 2, 2		50		sw-	sortec	I, fine- to coars	e-orained sa	and.			Sch. 40 PVC casing
XX					GW	light b	rown, saturate	d	Jose,		ก	lush-threaded to 0.01
												factory-slotted PVC
					Ss	SAND	STONE					screen 9-14 ft; #7 fin silica sand 7-8 ft; #5
			F				of Boring -	12 E E E F			<u></u> :	silica sand pack 8-16
			1		1	END	JF DURING -	10.5 1881		ļ		ft.
			1		ļ						1	
		20		Ì						ļ		
		20		ł								
	[- 1							
				·	1							
1		25								1		Unslotted
										ļ	_ ·	casing/sediment sun
												14-16 ft.
	ł											
		30										
`												
		[]		
	ŀ											

.

8.0 Hydraulic Conductivity 0.0524891 ft/min Site Name Hutsonville Power Station Job Number 249 Effective Casing Inner Diameter 2 in Screen Length 4 ft Reference Bouwer & Rice, 1976 Diameter of Drilled Hole 8 in Casing Inner Diameter 2 in 6.4 Aquifer Thickness 4 ft Depth to Screen Top 0 ft x × х х × 4.8 × Time (minutes) × × × 3.2 ; • × × ····× ···· × × × ····-X ·X × ဖ ×××× ž

ł

0.0

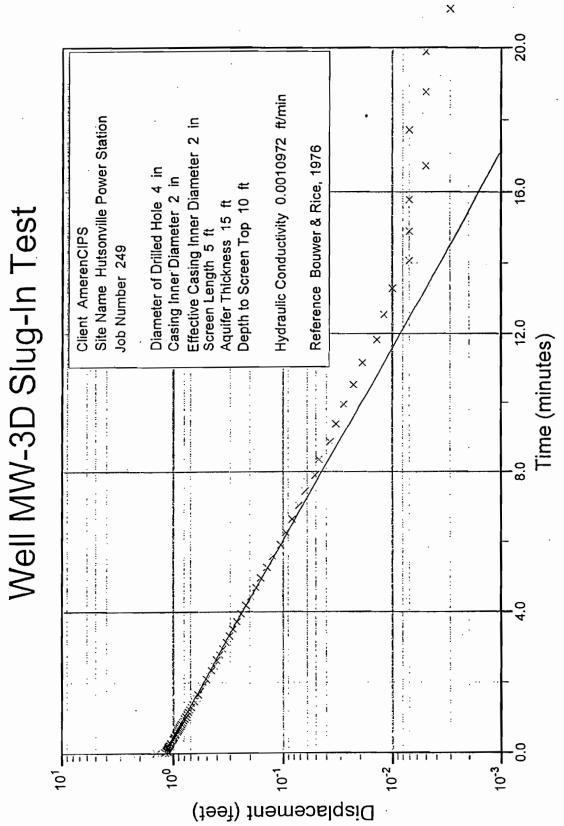
10-3

10⁻²

Well MW-3 Slug-Out Test

Client AmerenCIPS

أه


¹⁰

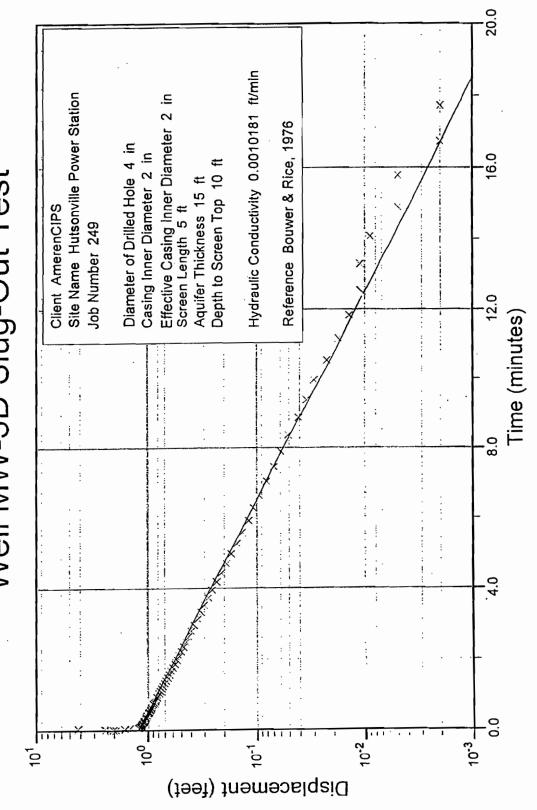
Displacement (feet)

I

ų.

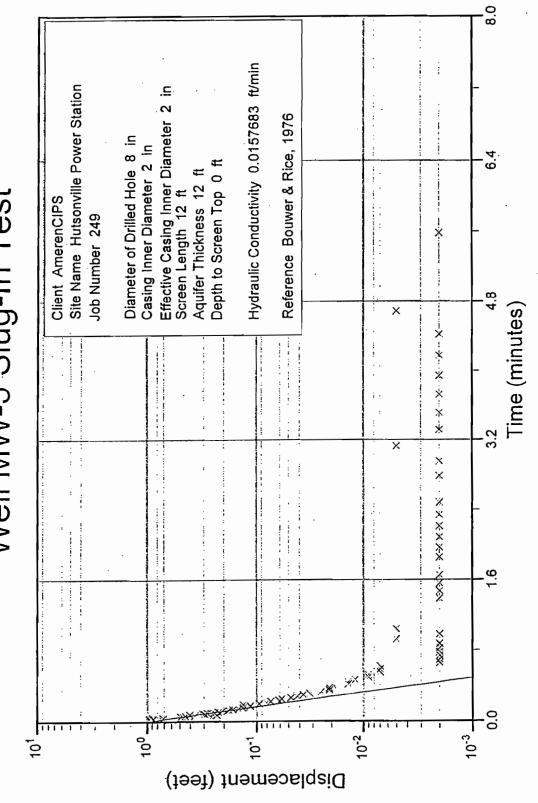
| |-

1

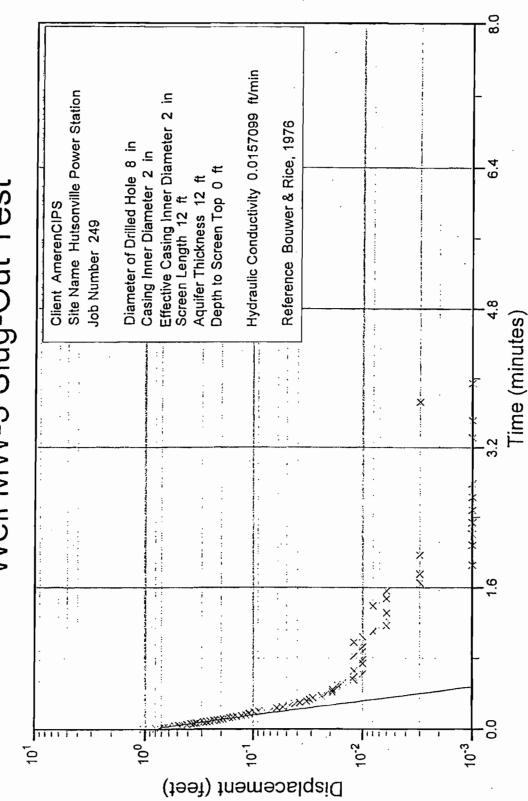

Ľ

5

ļ


it it and

ľ

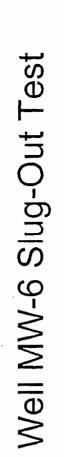


Well MW-3D Slug-Out Test

į.

Well MW-5 Slug-In Test

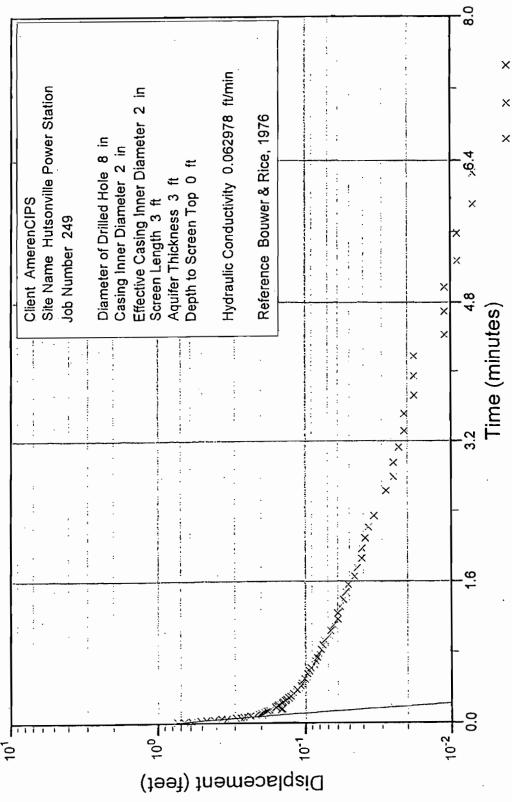
Well MW-5 Slug-Out Test

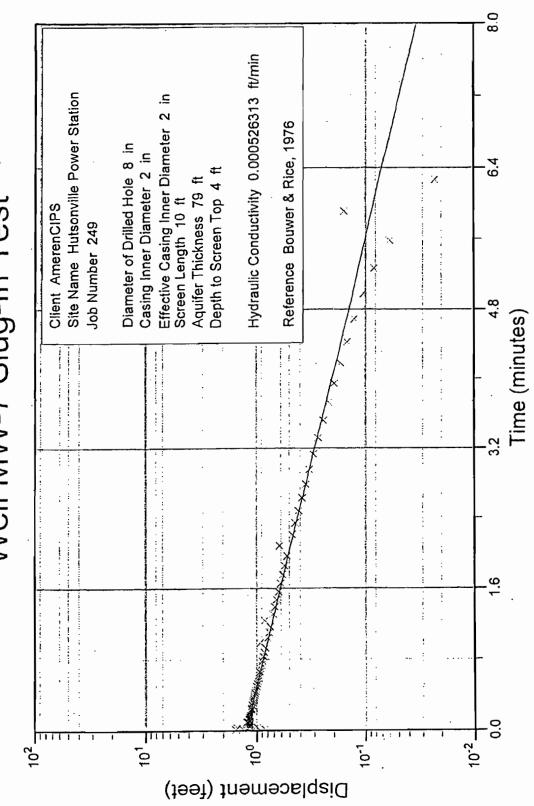

Ì

Î,

1.1.1

•


ī



i,

1

Ŋ

Well MW-7 Slug-In Test

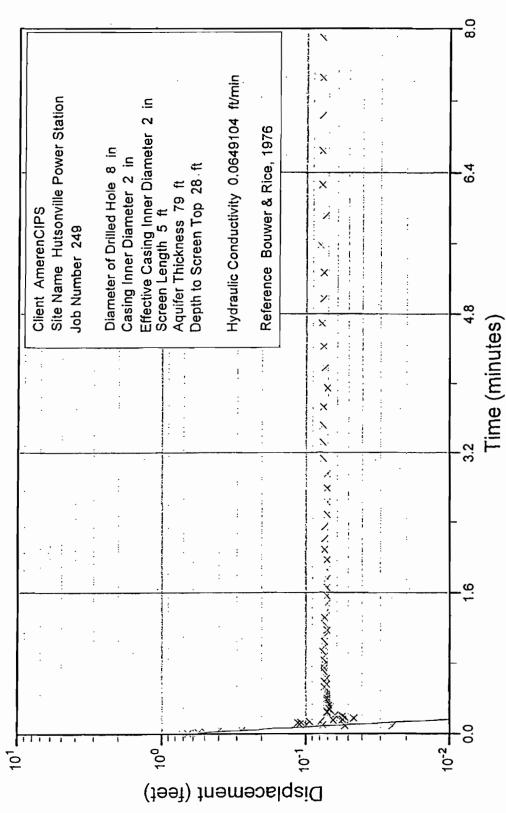
Į.

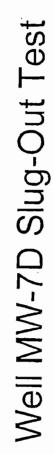
Ĩ'

[....,

iii l

.....

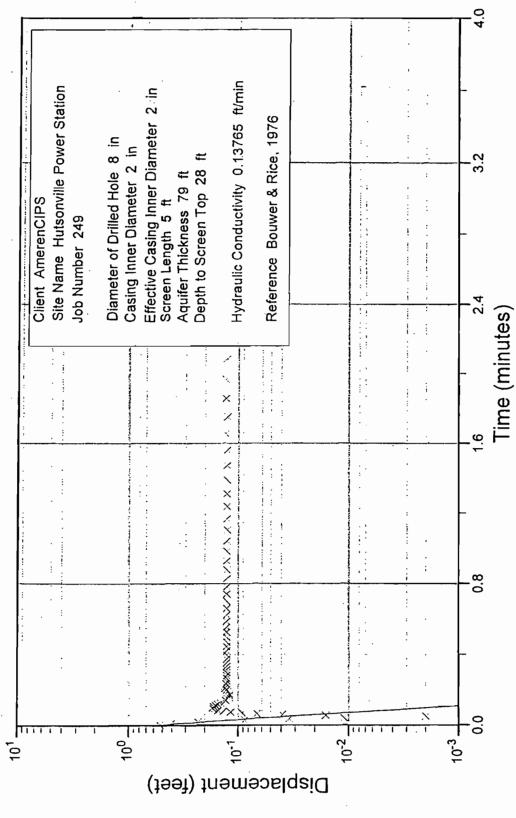

8.0 Hydraulic Conductivity 0.00049618 ft/min Site Name Hutsonville Power Station Effective Casing Inner Diameter 2 in Screen Length 10 ft Reference Bouwer & Rice, 1976 Diameter of Drilled Hole 8 in Casing Inner Diameter 2 in 6.4 4.0 Aquifer Thickness 79 ft Depth to Screen Top 4 ft Well MW-7 Slug-Out Test Client AmerenCIPS X Job Number 249 × 4.8 Time (minutes) × 3.2 1.6 0.0 100 10⁻²-10². **1**0 10⁻ Displacement (feet)

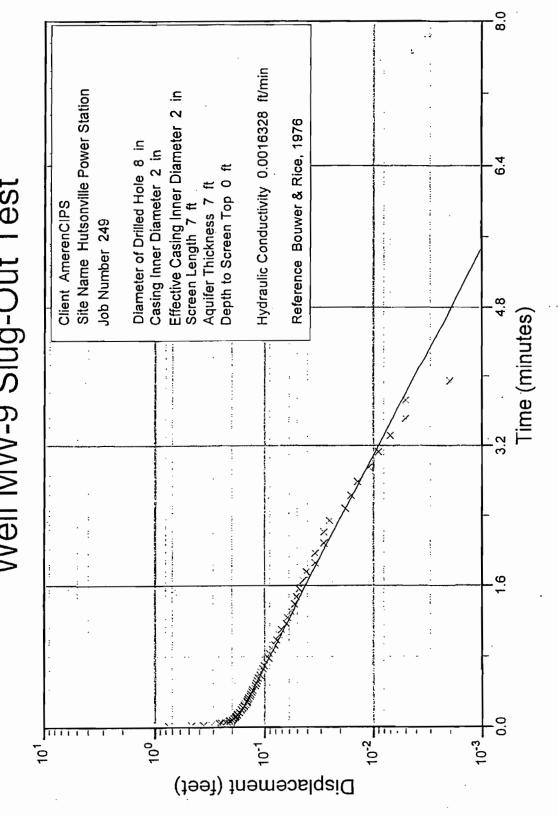

ļ. -

Well MW-7D Slug-In Test

i

ŀ

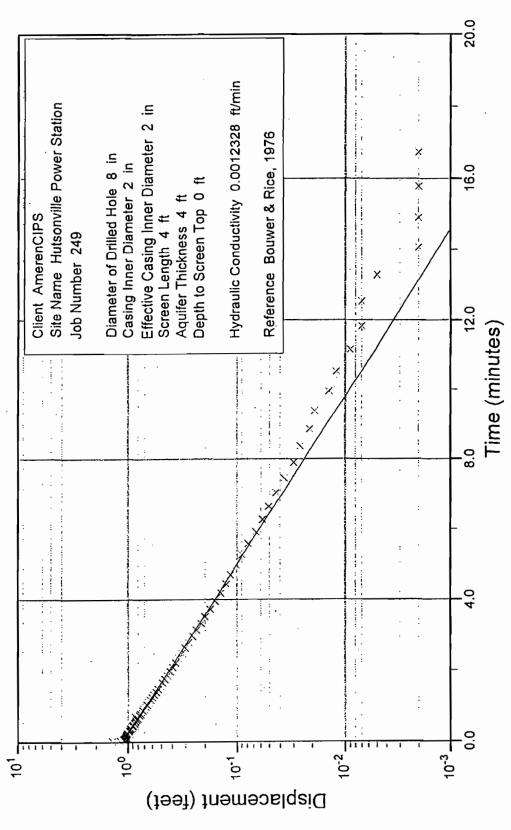


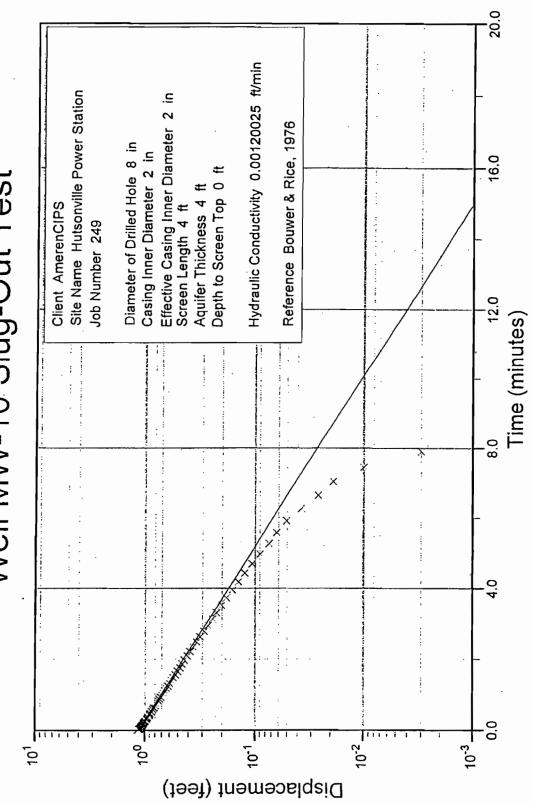


1

.

÷

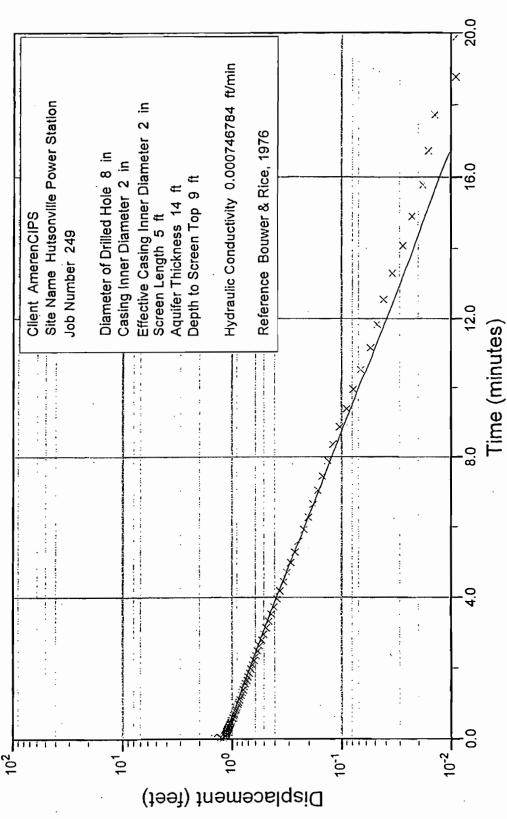



Well MW-9 Slug-Out Test

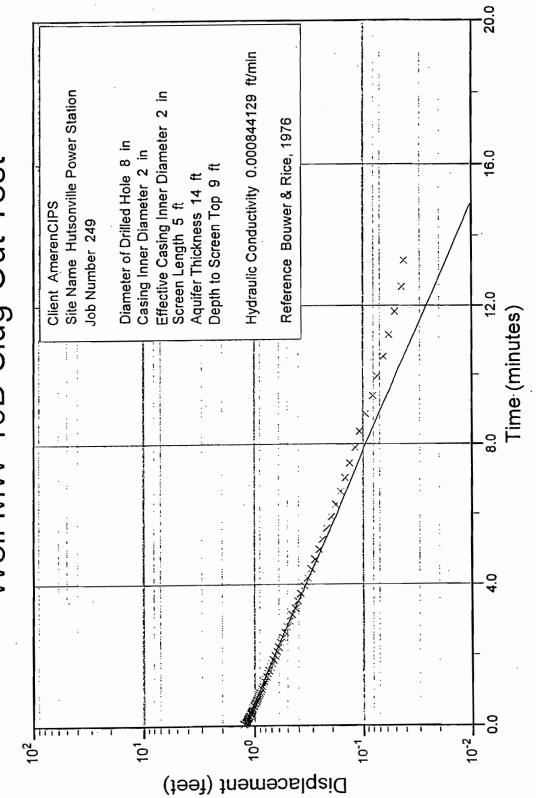
Well MW-10 Slug-In Test

ľ.

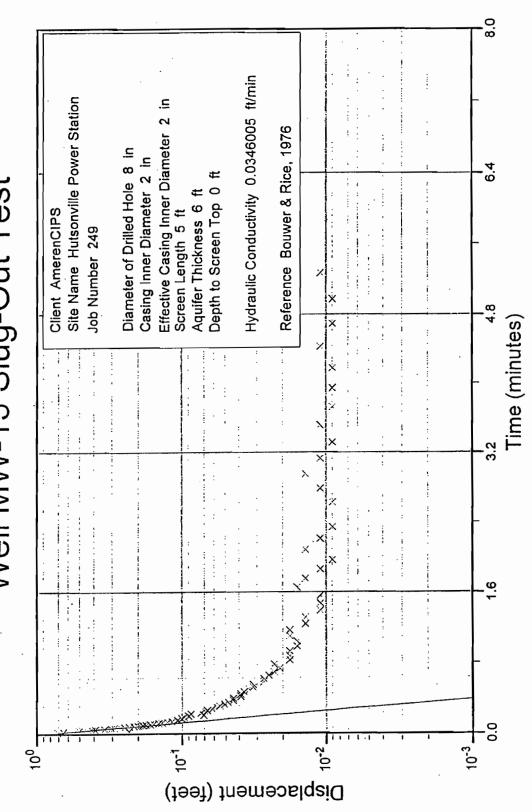
1


Well MW-10 Slug-Out Test

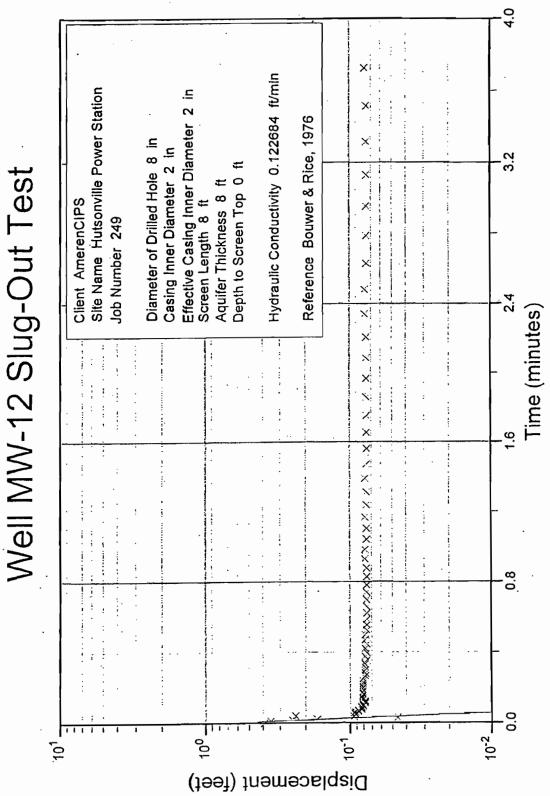
:.

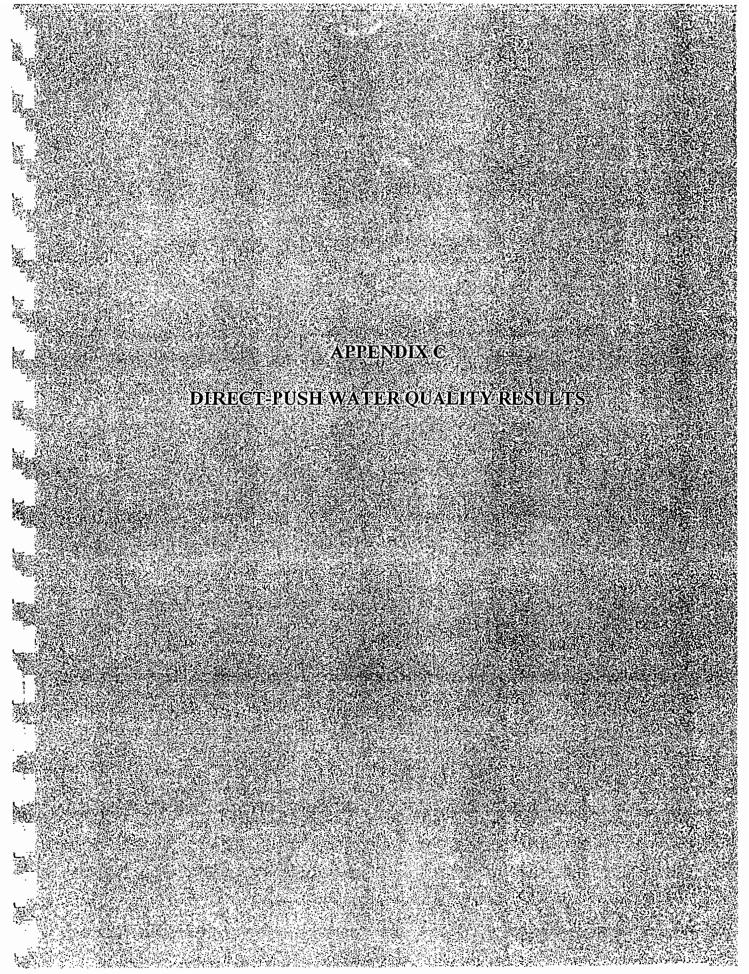

. . . .

•


TSD 000287

×


Well MW-10D Slug-Out Test


:

Well MW-13 Slug-Out Test

.

Sample Description	Hutsonville Pow	ROUTINE ver Station	composite
	EB - 0		grab
Lab ID#	W98-550		
Sample Date	08/25/98	Time Sampled	Sampler ID
Report Date	09/16/98		
Approved by	SD	_	Check if Entered
Results to:	John Romang	Jacque Bush	

Inorganic Analysis

Inorganic Analysis	5		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	261	umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		.mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide -		mg/L	1	EPA 310.1		
Calcium	12	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	ND	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	110	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
– Hardness, ca	30	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, mg	80	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	19	mg/L	-1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L	5	EPA 160.2		
· Residue, TDS	112	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	4	mg/L	5	EPA 300.0 (IC)	09/04/98	. m
Sulfate		mg/L	5	EPA 375.4		
тос		mg/L	0.5	EPA 415.2		
Oil & Grease		mg/L	2	EPA 1664		

					Report	•		
Metals A	Metals Analysis		Results	Units	Limit	Method	Test Date	Analyst
> Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	ND	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	9.053	total	 mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.434	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.		total	mg/L	0.005	GFAA EPA 243.2		
Nickel	diss.	0.164	total	mg/L	0.020	ICP EPA 200.7	09/16/98	. sd
Potassium	diss.	ND	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	0.624	total	mg/L	0.070	ICP EPA 200.7	. 09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

Sample Description	Hutsonville Pow	composite		
	GP - 2			grab
Lab ID#	W98-551			
Sample Date	08/25/98	Time Sampled	Sampler ID	
Report Date	09/16/98	· · · · ·	• •	
Approved by	SD	-		Check if Entered
Results to:	John Romang	Jacque Bush		

Inorganic Analysis

2

Ľ

1

į

111

Inorganic Analysis	6		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH lab ·		units	0.1	EPA 150.1		
Sp Conductivity lab	2220	umho	1	EPA 120.1	08/31/98	ij
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	60	mg/L as CaCO3	1	EPA 310.1	08/31/98	ij
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate -		mg/L	1	EPA 310.1		
Hydroxide -		mg/L	1	EPA 310.1		
Calcium	440	. mg/L	1	EPA 130.2	08/31/98	ij
Chloride -	10	mg/L	1	EPA 300.0 (IC)	09/04/98	, TTT
Hardness, total	1310	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, ca	1100	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, mg	210	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Magnesium	50	mg/L	1	EPA 130.2	08/31/98	lj
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	2118	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	1326	mg/L	5	EPA 300.0 (IC)	- 09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
тос		mg/L	0.5	EPA 415.2		
Oil & Grease		mg/L	2	EPA 1664		

Metals Ana	Metals Analysis		Results	Units	Report Units Limit Method Test Date					
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		Analyst		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2				
Boron	diss.	15,405	total	. mg/L	0.050	ICP EPA 200.7	09/16/98	sd		
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7				
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2				
Iron	diss.	42,275	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd		
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2				
Manganese	diss.	24,540	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd		
Nickel	diss.	0.030	total	.mg/L	0.005	GFAA EPA 243.2	09/16/98	sd		
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7				
Potassium	diss.	43,219	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd		
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7				
Sodium	diss.	31,103	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd		
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2				

ROUTINE

Sample Description	Hutsonville Pow	composite	
	GP - 3		grab
		· · · · · · · · · · · · · · · · · · ·	
Lab ID#	W98-552	-	
Sample Date	08/25/98	Time Sampled	Sampler ID
Report Date	09/16/98		
Approved by	SD	•	Check if Entered
Results to:	John Romang	Jacque Bush	

Inorganic Analysis

į

ļ.

Į.

P.

Inorganic Analysis		i		Report			
	-	Results	Units	Limit	Method	Test Date/	Analyst
pH	lab		units	0.1	EPA 150.1		
Sp Conductivit	ty lab ¯	1569	umho	1	EPA 120.1	08/31/98	tj
Alkalinity, P	-	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	-	4	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate H	CO3 [–]		mg/L	1	EPA 310.1		
Carbonate	-		mg/L	1	EPA 310.1		
Hydroxide	-		mg/L	1	EPA 310.1		
Calcium	-	320	mg/L	1	EPA 130,2	08/31/98	lj
Chloride	-	6	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, tota		930	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, ca	-	800	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, mg	-	130	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	-	31	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS	-		mg/L	5	EPA 160.2		
Residue, TDS	-	1470	mg/L	10	EPA 160.1 .	08/31/98	ij
Silica	-		mg/L	0.001	EPA 370.2		
Sulfate		918	mg/L	5	EPA 300.0 (IC)		m
Sulfate	-		mg/L	5	EPA 375.4		
гос	-		mg/L	0.5	EPA 415.2		
Oil & Grease	-		mg/L	2	EPA 1664		

					Report			
Metals Ana	Metals Analysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	28.235	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2	•	
Iron	diss.	0.344	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	2.892	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.087	total	.mg/L	0.005	GFAA EPA 243.2	09/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	26.889	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	15.319	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

۰.

Note: ND denotes result below detection limit

Sample Description	Hutsonville Pow	ROUTINE er Station	composite
	GP - 4		grab
Lab ID#			
Sample Date	08/26/98	- Time Sampled	Sampler ID
Report Date	09/16/98		
Approved by	SD	-	Check if Enlered
Results to:	John Romang	Jacque Bush	

Inorganic Analysis

ĥ

ţ,

5

Inorganic Ana	lysis		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH lab		units	0.1	EPA 150.1		
Sp Conductivity la	b 2190	umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate	· · · · ·	mg/L	1	EPA 310.1		
Hydroxide	·····	mg/L	1	EPA 310.1		
Calcium	384	mg/L	1	EPA 130.2	08/31/98	lj
Chloride	3	mg/L	1	EPA 300.0 (IC)	09/04/98	rm
Hardness, total	1340	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, ca	960	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, mg	380	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	91	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	1688	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	1531	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
roc		mg/L	0.5	EPA 415.2	1	
Dil & Grease		mg/L	2	EPA 1664		

•						F	Report			
, Me	letals Analysis Results		Un	its	Limit	Method	Test Date	Analyst		
Alu	Iminum	diss.		total	mg	/L	0.075	ICP EPA 200.7		-
. Alu	minum	diss.		total	mg	ſL	0.005	GFAA EPA 202.2		
Bor	ron	diss.	21.823	total	mg	ſL.	0.050	ICP EPA 200.7	09/16/98	sd
' Cop	pper	diss.		total	mg	ſL	0.005	1CP EPA 200.7		
Cop	pper	diss.		total	. mg	/L	0.002	GFÀA EPA 220.2		
Iron	า่	diss.	2.002	- total	mg	/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	า	diss.		total	mg	1L	0.010	GFAA EPA 236.2		
Mar	nganese	diss.	5.799	total	mg	/L	0.005	ICP EPA 200.7	09/16/98	sd
Nicl	kel	diss.		total		/L	0.005	GFAA EPA 243.2		
• Nici	kel	diss.	0.093	total	mg	/L	0.020	ICP EPA 200.7	09/16/98	sd
Pot	assium	diss.	10.140	total	mg	۸L	0.050	ICP EPA 200.7	09/16/98	sd
Silic	ca	diss.		total	mg	/L	0.050	ICP EPA 200.7		·
Sod	dium	diss.	17.586	total	mg	/L	0.070	ICP EPA 200.7	09/16/98	sd
Sod	diúm	diss.		total	mg	/L (0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

٠

Sample Description	Hutsonville Pow	ROUTINE ver Station	composite
	GP - 5		grab
Lab ID#	W98-554		
Sample Date	08/26/98	- Time Sampled	Sampler ID
Report Date	09/16/98		
Approved by	SD		Check if Entered
Results to:	John Romang	Jacque Bush	

Inorganic Analysis

ļ :.

...

].

٠..]

Ľ

٦ Į.

i.

ł

i

Inorgan	ic Analysis	5		Report			
		Results	Units	Limit	Method	Test Date/	Analyst
pН	lab		units	0.1	EPA 150.1		
Sp Condu	ctivity lab	2330	umho	1	EPA 120.1	08/31/98	lj
Alkalinity,	P -	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,	- N	216	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbona	te HCO3		mg/L	1	EPA 310.1		
Carbonate	-		mg/L	1	EPA 310.1		
Hydroxide			. mg/L	1	EPA 310.1		
Calcium	-	556	mg/L	1	EPA 130.2	08/31/98	lj
Chloride	-	11	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness.	total	1650	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness,	ca	1390	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness,	mg -	260	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesiur	m –	62	mg/L	1	EPA 130.2	08/31/98	lj
Residue, 1	rss		mg/L	5	EPA 160.2		
Residue, 1	rds [–]	1109	mg/L	10	EPA 160.1	08/31/98	ij.
Silica	-		mg/L	0.001	EPA 370.2		•
Sulfate		1225	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate	-		mg/L	5	EPA 375.4		
тос	-		mg/L	0.5	EPA 415.2		
Oil & Grea	se –		mg/L	2	EPA 1664		

					Report	1		
Metals Ar	nalysis		Results	Uni	ts Limit	Method	Test Date	Analyst
Aluminum	diss.		total		L 0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/	L 0.005	GFAA EPA 202.2		
Boron	diss.	8.821	total	mg/	L 0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/	L 0.005	ICP EPA 200.7		
Copper	diss.		total	mg/	L 0.002	GFAA EPA 220.2		
Iron	diss.	0.049	total	mg/	L 0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/	L 0.010	GFAA EPA 236.2		
Manganese	diss.	11.078	total	mg/	L 0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.		total	.mg/	L 0.005	GFAA EPA 243.2		
Nickel	diss.	0.160	total	mg/	L 0.020	ICP EPA 200.7	09/16/98	sd
Potassium	diss.	5.782	total	mg/	L 0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/	L 0.050	ICP EPA 200.7		
Sodium	diss.	13,190	total	mg/	L 0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/	L 0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

. .

		ROUTINE				
Sample Description	Hutsonville Pow	ver Station			composite	
	GP - 6				grab	
					•	
Lab ID#	W98-555					
Sample Date	08/26/98	Time Sampled		Sampler ID		
Report Date	09/16/98	-				
Approved by	SD	-		•••	Check if	Folgred
Results to:	John Romang	Jacque Bush				
Inorganic Analys	sis		Report			
-	Results	Units	Limit	Method	Test Date/	Analys
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	922	- umho	1	EPA 120.1	08/31/98	lį
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	ij
Alkalinity,M	40	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		- mg/L	1	EPA 310.1		
Hydroxide		mg/L	1	EPA 310.1		
Calcium	164	mg/L	1	EPA 130.2	08/31/98	fj
Chloride	16	mg/L	[`] 1	EPA 300.0 (IC)	09/04/98	m
lardness, total	540	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, ca	410	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, mg	130	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	31	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	724	- mg/L	10	EPA 160.1	08/31/98	lj
Silica		mg/L	0.001	EPA 370.2		
Sulfate	398	mg/L	5	EPA 300.0 (IC)	09/04/98	с т
Sulfate		mg/L	5	EPA 375.4		
TOC		mg/L	0.5	EPA 415.2		
			-			

Oil & Grease	•	mg/L	2

						Report			
	Metals Ana	alysis		Results	Units	Limit	Method	Test Date	Analyst
• .	Aluminum	diss.	_	total	mg/L	0.075	ICP EPA 200.7		
	Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
	Boron	diss.	4.592	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sđ
	Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
	Copper	diss.	•	total	mg/L	0.002	GFAA EPA 220.2		
	iron	diss.	0.030	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
:	Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
۱.	Manganese	diss.	1.022	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
	Nickel	diss.	0.063	total		0.005	GFAA EPA 243.2	09/16/98	sd
	Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
	Potassium	diss.	0.938	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
	Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
	Sodium /	diss. –	13.465	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
:	Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

EPA 1664

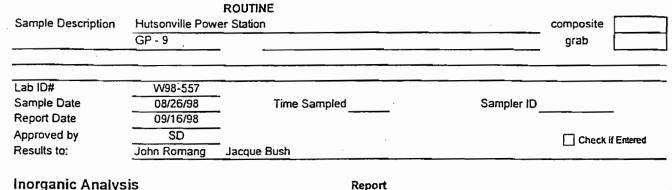
Note: ND denotes result below detection limit

Sample Description	Hutsonville Powe	ROUTINE er Station		composite
<u> </u>	GP - 7			grab
Lab ID#	W98-556			
Sample Date	08/26/98	Time Sampled	Sampler ID	
Report Date Approved by	09/16/98 SD			_
Results to:		Jacque Bush		Check if Entered

Inorganic Analysis

[] [

11 - 14 in 19


Į

Inorganic Analysis	5		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH lab		units	· 0.1	EPA 150.1		
Sp Conductivity lab	278	umho	1	EPA 120.1	08/31/98	lj –
Alkalinity, P	ND ·	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	40	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate -		mg/L	1	EPA 310.1		
– Hydroxide		mg/L	1	EPA 310.1		
Calcium -	40	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	5	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	160	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, ca	100	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
– Hardness, mg	60	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	14	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	214	mg/L	10 .	EPA 160.1	. 08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	71	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
		mg/L	0.5	EPA 415.2		
Oil & Grease		mg/L	2	EPA 1664		

Metals Ana	alysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.	•	total	mg/L ·	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	0.388	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2	·	
Iron	diss.	0.118	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.165	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.006	total	.mg/L	0.005	GFAA EPA 243.2	09/16/98	sď
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7	· · · · · · · · · · · · · · · · · · ·	
Potassium	diss.	1.808	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sđ
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	4.876	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		_

.

Note: ND denotes result below detection limit

Inorganic Analysis

1

ŀ

r

morganic Analysis	5		vehou			
	Results	Units	Limit	Method	Test Date/	Analys
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	1226	umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	280	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide		mg/L	1	EPA 310.1		
Calcium	224	mg/L	1	EPA 130.2	08/31/98	ij
Chloride -	6	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	710	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, ca	560	mg/L as CaCO3	1	EPA 130.2	08/31/98	. Ij
Hardness, mg	150	mg/L as CaCO3	1	EPA 130.2	08/31/98	Ę
Magnesium	36	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		' mg/L	5	EPA 160.2		
Residue, TDS	942	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	357	mg/L	5	EPA-300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
тос		mg/L	0.5	EPA 415.2		
Oil & Grease		mg/L	2	EPA 1664		

Motole Ane	lucio		Desertes	Unite	Report Limit	Method	Test Date	Anaiyst
Metals Ana			Results	Units			Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	0.882	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	0.056	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.241	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.009	total	-mg/L	0.005	GFAA EPA 243.2	09/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	5.480	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	6.981	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

Denert

Note: ND denotes result below detection limit

Sample Description	Hutsonville Pow	composite		
	GP - 10			grab
Lab ID#	W98-558			
Sample Date	08/26/98	Time Sampled	Sampler ID	
Report Date	09/16/98	-	_	
Approved by	SD	-		Check if Entered
Results to:	John Romang	Jacque Bush		

Inorganic Analysis

); | !

ł

ļ

Ï

ŀ

ţ.)

ŀ.

· · · · · ·

1.

÷

ì 3

Inorgan	nic Analysis	5		Report			
	-	Results	Units	Limit	Method	Test Date/	Analyst
рH	lab		units	0.1	EPA 150.1		
Sp Condu	uctivity lab	8040	umho	1	EPA 120.1	08/31/98	ij
Alkalinity,	P -	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	ij
Alkalinity,	м –	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj –
Bicarbona	ate HCO3		mg/L	1	EPA 310.1		
Carbonate	е -		mg/L	1	EPA 310.1		
Hydroxide			mg/L	1	EPA 310.1		
Calcium	-	440	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	<u>-</u>	5	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness	, total	3200	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness	, ca	1100	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness.	, mg –	2100	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Magnesiu	m –	504	mg/L	1	EPA 130.2	08/31/98	ij
Residue, 1	rss [–]		mg/L	5	EPA 160.2		
Residue,	TDS [–]	12058	mg/L	10	EPA 160.1	08/31/98	ij
Silica	-		mg/L	0.001	EPA 370.2		
Sulfate	-	7143	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate	_		mg/L	5	EPA 375.4		
тос	-		mg/L	0.5	EPA 415.2		
Oil & Grea	ise –		mg/L	2	EPA 1664		

					Report			
Metals Ana	alysis		Results	Unit	s Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/	0.075	ICP EPA 200.7		
Aluminum	diss.		- totai		. 0.005	GFAA EPA 202.2		
Boron	diss.	5.821	total	mg/l	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/	. 0.005	ICP EPA 200.7		
Copper	diss.		- total	mg/	0.002	GFAA EPA 220.2		
Iron	diss.	3388.660	total	. mg/	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/l	. 0.010	GFAA EPA 236.2		
Manganese	diss.	26.656	total	mg/l	_ 0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.		total	.mg/l	0.005	GFAA EPA 243.2		
Nickel	diss.	3.241	_ total	mg/	0.020	ICP EPA 200.7	9/16/98	sd
Potassium	diss.	10.972	total	mg/l	_ 0.050	ICP EPA 200.7	09/16/98	sđ
Silica	diss.		total	mg/l	0.050	1CP.EPA 200.7		
Sodium	diss.	187.503	total	mg/l	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		- total	mg/l	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

		ROUTINE				
Sample Description	Hutsonville Pow	er Station			composite	
	GP - 10D .				grab	
Lab ID#	W98-559			····		
Sample Date	08/26/98	Time Sampled		Sampler ID		
Report Date	09/16/98					
Approved by	SD	-			Check if	Entered
Results to:	John Romang	Jacque Bush				
Inorganic Analys	sis		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	8030	– umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide		mg/L	1	EPA 310.1		
Calcium	200	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	5	– mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	2100	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj

mg/L as CaCO3

mg/L as CaCO3

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

1

1

1

5

10

0.001

5

5

0.5

2

EPA 130.2

EPA 130.2

EPA 130.2

EPA 160.2

EPA 160.1

EPA 370.2

EPA 300.0 (IC)

EPA 375.4

EPA 415.2

EPA 1664

08/31/98

08/31/98

08/31/98

08/31/98

09/04/98

lj

ij

lj

ij

m

					Report			
Metals Ana	lysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	 mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	 	0.005	GFAA EPA 202.2		
Boron	diss.	5.553	total	, mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		- total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	 mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	3350.980	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	25.603	- total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.		total	.mg/L	0.005	GFAA EPA 243.2		
Nickel	diss.	3.146	total	 mg/∟	0.020	ICP EPA 200.7	9/16/98	sd
Potassium	diss.	13.135	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sđ
Silica	diss.		total	 mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	195.791	total	 mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	 mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

Hardness, ca

Hardness, mg

Residue, TSS

Residue, TDS

Oil & Grease

Silica

Sulfate

Sulfate

тос

Magnesium

500

1600

384

12110

7143

Sample Description	Hutsonville Pow	ROUTINE ver Station	composite
	GP - 10F		grab
Lab ID#	W98-560		
Sample Date	08/26/98	Time Sampled	Sampler ID
Report Date	09/16/98		
Approved by	SD	-	Check if Entered
Results to:	John Romang	Jacque Bush	

Inorganic Analysis

Ī

*----

·... Ĭ

1

ł

Inorganic Analysi	S		Report			
_	Results	Units	Limit	Method	Test Date/	Analyst
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	8060	umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide	· · · · · · · · · · · · · · · · · · ·	mg/L	1	EPA 310.1		
Calcium	240	mg/L	1	EPA 130.2	08/31/98	lj
Chloride	5	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	2000	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, ca	600	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj -
Hardness, mg	1400	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Magnesium	336	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	12236	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370_2		
Sulfate	7143	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
тос		mg/L	0.5	EPA 415_2		
Oil & Grease		mg/L	2	EPA 1664		

					Report			
Metals Ana	lysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	5.639	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		•
Iron	diss.	3391.560	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	26.135	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.		total	-mg/L	0.005	GFAA EPA 243.2		
Nickel	diss.	2.710	total	mg/L	0.020	ICP EPA 200.7	9/16/98	sd
Potassium	diss.	13.276	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	196.860	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss. –		total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

!

Sample Descr	iption	Hutsonville Pov	wer Statio	n				composite	
		GP - 11	_					grab	
Lab ID#		W98-561							
Sample Date		08/27/98	—	Time Sampled			Sampler ID		•
Report Date		09/16/98	_				• •	•	•
Approved by		SD						Check il	Enterod
Results to:		John Romang	Jacqu	e Bush					
Inorganic A	nalvs	is			Report				
	,	Results		Units	Limit		Method	Test Date/	Analy
pH	lab			units	0.1		EPA 150.1		
Sp Conductivit	y lab	1707	-	umho	1		EPA 120.1	08/31/98	lj
Alkalinity, P		ND	_	mg/L as CaCO3	1		EPA 310.1	08/31/98	lj
Alkalinity M		ND	-	mg/L as CaCO3	1		EPA 310.1	08/31/98	lj
Bicarbonate H	CO3			mg/L	1		EPA 310.1		
Carbonate				mg/L	1		EPA 310.1		
Hydroxide			_	mg/L	1		EPA 310.1		
Calcium		72	-	mg/L	1		EPA 130.2	08/31/98	ij.
Chloride		3	-	mg/L	1		EPA 300.0 (IC)	09/04/98	m
Hardness, tota	ı	410		mg/L as CaCO3	1		EPA 130.2	08/31/98	ij
Hardness, ca	•	180	-	mg/L as CaCO3	1		EPA 130.2	08/31/98	
Hardness, mg		230	-	mg/L as CaCO3	1		EPA 130.2	08/31/98	
Magnesium		55	_	mg/L	1		EPA 130.2	08/31/98	- 1
Residue, TSS				mg/L	5		EPA 160.2		
Residue, TDS		1918	_	mg/L	10		EPA 160.1	08/31/98	ij
Silica				mg/L	0.001		EPA 370.2		
Sulfate		1276		mg/L	5		EPA 300.0 (IC)	09/04/98	m
Sulfate			_	mg/L	5		EPA 375.4		_
ГОС		<u></u>		mg/L	0.5		EPA 415.2		
Dil & Grease			-	mg/L	2		EPA 1664		
						Report		• .	
Metals Anal	lysis		Result	S	Units	Limit	Method	Test Date	Analy
Juminum	diss.		total		mg/L	0.075	ICP EPA 200.7		
luminum	diss.		total		mg/L	0.005	GFAA EPA 202.2		
Boran	diss.	1.460	total		mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total		mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total		mg/L	0.002	GFAA EPA 220.2		
ron	diss.	184.150	total		mg/L	0.020	ICP EPA 200.7	09/16/98	sđ
non	diss.		total		mg/L	0.010	GFAA EPA 236.2		
langanese	diss.	3.904	- total		mg/L	0.005	ICP EPA 200.7	09/16/98	sd
lickel	diss.	·	total		- mg/L	0.005	GFAA EPA 243.2		
lickel	diss.	0.900	total	·	mg/L	0.020	ICP EPA 200.7	9/16/98	sd
otassium	diss.	1.334	- total		mg/L	0.050	ICP EPA 200.7	09/16/98	sd
ilica	diss.		total		mg/L	0.050	ICP EPA 200.7		
		19.638	total		mg/L	0.070	ICP EPA 200.7	09/16/98	sd
odium	diss.	19.030	(oun						

Sample Description	Hutsonville Powe	ROUTINE er Station		composite
	GP - 12	· · · · · · · · · · · · · · · · · · ·		grab
Lab ID#	W98-562			
Sample Date	08/27/98	Time Sampled	Sampler ID	
Report Date	09/16/98		· -	
Approved by	SD			Check if Entered
Results to:	John Romarig	Jacque Bush		

Inorganic Analysis

ŗ ...

11910

Ē <u>}</u>...

ï

Inorganic Analysis	5		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	1667	umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	
Alkalinity,M	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide -		mg/L	1	EPA 310.1		
Calcium	72	mg/L	1	EPA 130.2	08/31/98	lj
Chloride	2	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	340	mg/L as CaCO3	1	EPA 130.2	08/31/98	tj
Hardness, ca	180	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj –
Hardness, mg	160	mg/L as CaCO3	1	EPA 130.2	08/31/98	
Magnesium	38	mg/L	1	EPA 130.2	08/31/98	 Ij
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	1194	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	867	mg/L	5	EPA-300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
roc –		mg/L	0.5	EPA 415.2		
Oil & Grease		mg/L	2	EPA 1664		

					Report	• _		
Meta	ls Analysis		Results	Units	Limit	Method	Test Date	Analyst
Alumin	um diss		total	mg/L	0.075	ICP EPA 200.7		
Alumin	num diss		total		0.005	GFAA EPA 202.2		
Boron	diss	. 1.234	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Сорре	r diss		total	mg/L	0.005	ICP EPA 200.7		
Coppe	r diss		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss	. 11.931	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss		totai	mg/L	0.010	GFAA EPA 236.2		
Manga	inese diss	2.626	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss		total	·mg/L	0.005	GFAA EPA 243.2		
Nickel	diss	0.781	total	mg/L	0.020	ICP EPA 200.7	9/16/98	sd
Potass	ium diss	1.490	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss		total	mg/L	0.050	ICP EPA 200.7		
Sodiun	n diss	21.400	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	n diss	,	total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

		ROUTINE				
Sample Description	Hutsonville Pow	ver Station			composite	
	EB - 2	_			grab	
×						
Lab ID#	W98-563				· · · · ·	•
Sample Date	08/27/98	Time Sampled		Sampler ID		
Report Date	09/16/98	-				
Approved by	SD	- .			Check if	Entered
Results to:	John Romang	Jacque Bush		· .		
Inorganic Analys	sis		Report			
J III	Results	Units	Limit	Method	Test Date/	Analys
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	39	umho	- 1	EPA 120.1	08/31/98	lj –
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate	·		1	EPA 310.1		
Hydroxide		mg/L	1	EPA 310.1		
Calcium	ND	mg/L	1	EPA 130.2	08/31/98	lj
Chloride	ND	mg/L	['] 1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	ND	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, ca	ND	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, mg	ND	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	ND	- лд/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	30	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	2	- mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate	····	mg/L	5	EPA 375.4		
FOC		mg/L	0.5	EPA 415.2		
Dil & Grease		mg/L	2	EPA 1664		

·						Report		. •	
	Metals Ana	alysis		Results	Units	Limit	Method	Test Date	Analyst
	Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
·	Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
	Boron	diss.	ND	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
;	Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
1	Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
	iron	diss.	1.398	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
ς.	Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
	Manganese	diss.	0.039	total _	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
	Nickel	diss.	0.012	total -	-mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
	Nickel	diss.		total -	mg/L	0.020	ICP EPA 200.7		
	Potassium	diss.	ND	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
	Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
	Sodium	diss.	0.211	total	mg/L_	0.070	ICP EPA 200.7	09/16/98	sd
	Sodium	diss.		total –	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

ľ

ŀ

ĵ

ţ

		ROUTINE				_
Sample Description	Hutsonville Pow	ver Station		_	composite	
	GP - 13			· · ·	grab	
Lab ID#	W98-573			a		
Sample Date	08/27/98	Time Sampled		Sampler ID		
Report Date	09/16/98	-				
Approved by	SD	-			Check if	Entered
Results to:	John Romang	Jacque Bush				
Inorganic Analys	sis		Report	· * .		
. ,	Results	Units	Limit	Method	Test Date/	Analys
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	716	- umho	1	EPA 120.1	08/31/98	ij
Alkalinity, P	ND	- mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	136	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		- mg/L	1	EPA 310.1		
Hydroxide		- mg/L	1	EPA 310.1		
Calcium	108	- mg/L	1	EPA 130.2	08/31/98	ij
Chloride	29	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	390	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj –
Hardness, ca	270	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, mg	120	mg/L as CaCO3	1	EPA 130.2	08/31/98	łj
Magnesium	29	mg/L	1	EPA 130.2	08/31/98	łj
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	554	mg/L	10	EPA 160.1	08/31/98	· lj
Silica		mg/L	0.001	EPA 370.2		
Sulfate	104	mg/L	5	EPA 300.0 (IC)	09/04/98	m
			-			

ļ	Residue, TDS	554	mg/L	10	EPA 160.1	08/31/98	t lj.
	Silica		mg/L	0.001	EPA 370.2		
ſ.	Sulfate	104	mg/L	5	EPA 300.0 (IC)	09/04/98	m
ŀ	Sulfate		mg/L	5	EPA 375.4		
	TOC		mg/L	0.5	EPA 415.2		
	Oil & Grease		mg/L	2	EPA 1664		
L.					Report		

Metals Ana	alysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	0.226	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	ND	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.005	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	ND	total	.mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	0.530	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	3.994	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

ļ

Į

ğ

Sample Description	Hutsonville Pow	ROUTINE ver Station		composite
<u> </u>	GP - 14			grab
Lab ID#	W98-574			
Sample Date	08/27/98	Time Sampled	Sampler ID	
Report Date	09/16/98		· -	
Approved by	SD		•	Check if Entered
Results to:	John Romang	Jacque Bush		

Inorganic Analysis

ļ

ľ

ŀ

ĥ ŀ

;

Inorgan	nic Analysis	5		Report			
		Results	Units	Limit	Method	Test Date/	Analyst
рН	lab		units	0.1	EPA 150.1		
Sp Condu	uctivity lab	900	umho	¹ 1	EPA 120.1	08/31/98	ij
Alkalinity,	P	32	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,	м –	336	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbona	ate HCO3		mg/L	1	EPA 310.1		
Carbonate	е –		mg/L	1	EPA 310.1		
Hydroxide			mg/L	1	EPA 310.1		
Calcium	-	128	mg/L	1	EPA 130.2	08/31/98	lj
Chloride		26	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness,	, total	560	mg/L as CaCO3	1	EPA 130.2	08/31/98	tj
Hardness,	. ca	320	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness,	, mg	240	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Magnesiu	m –	58	mg/L	1	EPA 130.2	08/31/98	ij
Residue, 1	rss [–]		mg/L	5	EPA 160.2		
Residue, 1	TDS –	620	mg/L ·	10	EPA 160.1	08/31/98	tj
Silica	-		mg/L	0.001	EPA 370.2		
Sulfate	-	. 52	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate			mg/L	5	EPA 375.4		
TOC	_		mg/L	0.5	EPA 415.2		
Oil & Grea			mg/L	2	EPA 1664		

						кероп			
• .	Metals Ana	alysis		Results	Units	Limit	Method	Test Date	Analyst
	Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
•	Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
. .	Boron	diss.	0.066	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
1	Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
1	Copper	diss.		total	mg/L'	0.002	GFAA EPA 220.2		
	Iron	diss.	0.126	total	mg/L	0.020	ICP EPA 200.7	09/16/98	· sd
:	Iron	diss.		total		0.010	GFAA EPA 236.2		
	Manganese	diss.	0.925	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
	Nickel	diss.	0.014	total	.mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
	Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
	Potassium	diss.	3.499	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
	Silica	diss.	· · · · · · · · · · · · · · · · · · ·	total	mg/L	0.050	ICP EPA 200.7		
	Sodium	diss.	5.281	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sď
·	Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

Sample Description	Hutsonville Pow	composite	
	GP - 15		grab
Lab ID#	W98-575		
Sample Date	08/27/98	- Time Sampled	Sampler ID
Report Date	09/16/98		*
Approved by	SD	-	Check if Entered
Results to:	John Romang	Jacque Bush	

Inorganic Analysis

1.

ŀ

たいし

ŀ.

Inorganic Analysis	5		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	884	umho	1	EPA 120.1	08/31/98	ij
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	ij
Alkalinity,M	232	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
- Hydroxide		mg/L	1	EPA 310.1		
Calcium	140	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	34	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	500	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, ca	350	mg/L as CaCO3	1	EPA 130.2	08/31/98	1j
Hardness, mg	150	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	36	mg/L	1	EPA 130.2	08/31/98	lj
Residue, TSS		.mg/L	5	EPA 160.2		_
Residue, TDS	646	mg/L	10	EPA 160.1	08/31/98	lj
Silica		mg/L	0.001	EPA 370.2		
Sulfate	125	mg/L	5	EPA 300.0 (IC)		m
Sulfate		mg/L	5	EPA 375.4		
тос		mg/L	0.5	EPA 415.2		-
Oil & Grease		mg/L	2	EPA 1664		

Metals Ana	lysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	0.292	total		0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	0.028	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.013	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	ND	total	.mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	0.795	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	4.048	total .	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

.

Note: ND denotes result below detection limit

ļ

D

			ROUTI	NE			-		
Sample Descripti	ion	Hutsonville Pow	er Statio	n				composite	
		GP - 16						grab	
Lab ID#		W98-576							
Sample Date		08/27/98	-	Time Sampled			Sampler ID		
Report Date		09/16/98							
Approved by		SD	-					Check if	Entered
Results to:		John Romang	Jacque	e Bush					
Inorganic An	alvsi	S			Report				
		Results		Units	Limit		Method	Test Date/	Analys
pH la	ıb			units	0.1		EPA 150.1		
Sp Conductivity	lab	957	_	umho	1		EPA 120.1	08/31/98	ij
Alkalinity, P		ND		mg/L as CaCO3	1		EPA 310.1	08/31/98	lj
Alkalinity,M		244		mg/L as CaCO3	1		EPA 310.1	08/31/98	ij
Bicarbonate HCC	D 3			mg/L	1		EPA 310.1		
Carbonate			-	mg/L	1		EPA 310.1		
Hydroxide			-	mg/L	1		EPA 310.1		
Calcium		168	-	mg/L	1		EPA 130.2	08/31/98	lj
Chloride		52	-	mg/L	1		EPA 300.0 (IC)	09/04/98	m
Haroness, total		530	-	mg/L as CaCO3	1		EPA 130.2	08/31/98	ij
Hardness, ca		420	-	mg/L as CaCO3	1		EPA 130.2	08/31/98	lj
Hardness, mg		110	-	mg/L as CaCO3	1		EPA 130.2	08/31/98	Ę
Magnesium		26	-	mg/L	1		EPA 130.2	08/31/98	lj
Residue, TSS			-	mg/L	5		EPA 160.2		
Residue, TDS		674	-	mg/L	10		EPA 160.1	08/31/98	lj
Silica			-	mg/L	0.001		EPA 370.2		
Sulfate		104	-	mg/L	5		EPA 300.0 (IC)	09/04/98	m
Sulfate			-	mg/L	5		EPA 375.4		
TOC			-	mg/L	0.5		EPA 415.2		
Oil & Grease			-	mg/L	2		EPA 1664		
						Report			
Metals Analys	sis		Result	5	Units	Limit	Method	Test Date	Analys
Aluminum c	diss.		total		mg/L.	0.075	ICP EPA 200.7		
Aluminum c	ว์เรร.		- total		mg/L	0.005	GFAA EPA 202.2		
	diss.	0.213	total		mg/L	0.050	ICP EPA 200.7	09/16/98	sd
	diss.		total		mg/L	0.005	ICP EPA 200.7		
	diss.		total	•	mg/L	0.002	GFAA EPA 220.2		
	diss.	ND	total		mg/L	0.020	ICP EPA 200.7	09/16/98	sd
	diss.		total		mg/L	0.010	GFAA EPA 236.2		
	diss.	0.012	total		mg/L	0.005	ICP EPA 200.7	09/16/98	sd
-	diss.	ND	total		-mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
	diss.		total		mg/L	0.020	ICP EPA 200.7		

0.050

0.050

0.070

mg/L

mg/L

mg/L

mg/L

.

0.441

4.182

.

diss.

diss.

diss.

diss.

Note: ND denotes result below detection limit

Potassium

Silica

Sodium

Sodium

total

total

total

total

ICP EPA 200.7

ICP EPA 200.7

ICP EPA 200.7

0.0005 GFAA EPA 273.2

TSD 000309

09/16/98

09/16/98

sd

sd

Sample Description	Hutsonville Pow	er Station		composite
	GP - 17			grab
Lab ID#	W98-577	· · · · · · · · · · · · · · · · ·		
Sample Date	08/27/98	Time Sampled		Sampler ID
Report Date	09/16/98			
Approved by	SD	-		Check if Entered
Results to:	John Romang	Jacque Bush		
Inorganic Analys	is		Report	
	Results	Units	Limit	Method Test Date/ Analy
pH lab		units	0.1	EPA 150.1
Sp Conductivity lab	692	- umho	1	EPA 120.1 08/31/98 lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1 08/31/98 lj
Alkalinity,M	104	mg/L as CaCO3	1	EPA 310.1 08/31/98 lj
Bicarbonate HCO3		- mg/L	1	EPA 310.1
Carbonate		- mg/L	1	EPA 310.1
Hydroxide		mg/L	1	EPA 310.1
Calcium	100	, mg/L	1	EPA 130.2 08/31/98 lj
Chloride	36	- mg/L	1	EPA 300.0 (IC) 09/04/98 m
Hardness, total	320	mg/L as CaCO3	1	EPA 130.2 08/31/98 lj
Hardness, ca	250	- mg/L as CaCO3	1	EPA 130.2 08/31/98 lj
Hardness, mg	70	mg/L as CaCO3	1	EPA 130.2 08/31/98 lj
Magnesium	17	mg/L	1	EPA 130.2 08/31/98 lj
Residue, TSS		mg/L	5	EPA 160.2
Residue, TDS	596	mg/L	10	EPA 160.1 08/31/98 1j
Silica		mġ/L	0.001	EPA 370.2
Sulfate	83	mg/L	5	EPA 300.0 (IC) 09/04/98 m
Sulfate		mg/L	5	EPA 375.4
roc		mg/L	0.5	EPA 415.2
Dil & Grease		mg/L	2	EPA 1664
				Report

Metals Ana	lysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	0.291	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sđ
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	ND	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.099	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	ND	total	-mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	0.942	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	3.444	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

!

Sample Description	Hutsonville Pow GP - 18	ver Station			composite	
	GF - 10				grab	
Lab ID#	W98-578					
Sample Date	08/27/98	- Time Sampled		Sampler ID		
Report Date	09/16/98	-		Complet ID		•
Approved by	SD	-				_
Results to:	John Romang	Jacque Bush			. 🗌 Check i	Entered
	benn Kennang					
Inorganic Analys	is		Report			
	Results	Units	Limit	Method	Test Date/	Anal
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	742	umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	- 4
Alkalinity,M	160	mg/L as CaCO3	1	EPA 310.1	08/31/98	li
Bicarbonate HCO3		mg/L	1 ·	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide		mg/L	1	EPA 310.1		
Calcium	120	- mg/L	1	EPA 130.2	08/31/98	lj
Chloride	32	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	400	mg/L as CaCO3	1	EPA 130.2	08/31/98	ų
Hardness, ca	300	mg/L as CaCO3	1	EPA 130.2	08/31/98	łj
Hardness, mg	100	mg/L as CaCO3	1 .	EPA 130.2	08/31/98	lj
Magnesium	24	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L	5	EPA 160.2		
Residue, TDS	558	mg/L	10 ·	EPA 160.1	08/31/98	lj
Silica		mg/L	0.001	EPA 370.2		
Sulfate	83	mg/L	5	-EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
roc		mg/L	0.5	EPA 415.2		
Dil & Grease		mg/L	2	EPA 1664		

•					Report			
Metals An	alysis		Results	Units	' Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	0.280	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	ND	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
. Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.010	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	ND	total	.mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		_
Potassium	diss.	0.547	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	3.471	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sđ
Sodium	diss.		total	' mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

.

Ĩ.

[:

ļ;

Sample Descr		Hutsonville Pow EB - 1	-				·	composite grab	
Lab ID#		W98-579							
Sample Date		08/28/98	-	Time Sampled			Sampler ID		
Report Date		09/16/98	-						
Approved by		SD	-					Check if	Folgred
Results to:		John Romang	Jacque	e Bush					Chieres
Inorganic A	Analysi	s			Report	•			
	-	Results		Units	Limit		Method	Test Date/	Analys
pH	lab			units	0.1		EPA 150.1		
Sp Conductivit	v lab	25	-	umho	1		EPA 120.1	08/31/98	lj
Alkalinity, P		ND	-	mg/L as CaCO3	1		EPA 310.1	08/31/98	lj
Alkalinity,M		ND	-	mg/L as CaCO3			EPA 310.1	08/31/98	lj
Bicarbonate H	CO3		-	mg/L	1		EPA 310.1		
Carbonate			-	mg/L	1		EPA 310.1		
Hydroxide			-	mg/L	1		EPA 310.1		
Calcium		4	-	mg/L	1		EPA 130.2	08/31/98	lj
Chloride		ND	-	mg/L	1		EPA 300.0 (IC)	09/04/98	m
Hardness, tota	1	40	-	mg/L as CaCO3	1		EPA 130.2	08/31/98	lj
Hardness, ca		10	-	mg/L as CaCO3			EPA 130.2	08/31/98	lj
Hardness, mg			-	mg/L as CaCO3			EPA 130.2	08/31/98	
Magnesium		7	-	mg/L	1		EPA 130.2	08/31/98	lj
Residue, TSS			-	mg/L	5		EPA 160.2		
Residue, TDS	· · ·	ND	-	mg/L	10		EPA 160.1	08/31/98	lj
Silica	•		•.	mg/L	0.001		EPA 370.2		
Sulfate		1	-	mġ/∟	5		EPA 300.0 (IC)	09/04/98	m
Sulfate		·	-	mg/L	5		EPA 375.4		
TOC			-	mg/L	0.5		EPA 415.2		
Oil & Grease	•		-	mg/L	2		EPA 1664		
						Report			
Metals Ana	lysis		Results		Units	Limit	Method	-Test Date	Analys
Aluminum	diss.		total		mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total		mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	0.053	total		mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total		mg/L	0.005	ICP EPA 200.7		
Copper	diss.	•	total		mg/L	0.002	GFAA EPA 220.2		
ron	diss.	ND	total		mg/L	0.020	ICP EPA 200.7	09/16/98	sd
ron	diss.		total		mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.039	total		mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.005	total		.mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total		mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	ND	total		mg/L	0.050	ICP EPA 200.7	09/1.6/98	sd
Silica	diss.		total		mg/L	0.050	ICP EPA 200.7		
Shirea	diss.	ND	total		mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	0155.				mg/L	0.0005	GFAA EPA 273.2		

.....

Sample Description	Hutsonville Pow GP - 20			· · · · · · · · · · · · · · · · · · ·	composite grab	
Lab ID#	W98-580			· · · · · · · · · · · · · · · · · · ·		
Sample Date	08/28/98	Time Sampled		- Sampler ID		
Report Date	09/16/98	-		•		•
Approved by	SD	-			Check il	Entered
Results to:	John Romang	Jacque Bush				
Inorganic Analys	is		Report			
3	Results	Units	Limit	Method	Test Date/	Analy
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	1096	- umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	16	- mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Alkalinity,M	192	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		- mg/L	1	EPA 310.1		
Hydroxide		mg/L	1	EPA 310.1		
Calcium	164	mg/L	1	EPA 130.2	08/31/98	lj
Chloride	29	mg/L	1	EPA 300.0 (IC)	09/04/98	m
lardness, total	560	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
lardness, ca	410	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
lardness, mg	150	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Magnesium	36	mg/L	1	EPA 130.2	08/31/98	lj
Residue, TSS	•···	- mg/L	5	EPA 160.2		
Residue, TDS	810	mg/L	10	EPA 160.1	08/31/98	tj
Silica		mg/L	0.001	EPA 370.2		
Sulfate	344	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
°OC ·		mg/L	0.5	EPA 415.2		
Dil & Grease		. mg/L	2	EPA 1664		

Metals Ana	alysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	14.878	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
iron	diss.	ND	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	4.079	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.009	total	.mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	4.825	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	28.469	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

ļ

:

ſ

ł

۰.

Sample Descripti	ion I	Hutsonville Pov	ROUTINI	-				composite	
	_	GP - 20D						grab	
			· · · · ·						
Lab ID#		W98-581							
Sample Date	_	08/28/98		Time Sampled			Sampler ID		-
Report Date		09/16/98							
Approved by	_	SD	-					Check i	Entered
Results to:	-	John Romang	Jacque E	Bush					
norganic An	alysis	;			Report				
		Results		Units	Limit		Method	Test Date/	Analys
pH la	b			units	0.1		EPA 150.1		
Sp Conductivity	lab –	1066	-	umho	1		EPA 120.1	08/31/98	ij
Alkalinity, P	_	8	– n	ng/L as CaCO3	1		EPA 310.1	08/31/98	ij
Alkalinity,M	-	220	- n	ng/L as CaCO3	1		EPA 310.1	08/31/98	lj
Bicarbonate HCC)3 -		-	mg/L	1		EPA 310.1		
Carbonate	-			mg/L	1		EPA 310.1		
Hydroxide	-		-	mg/L	1		EPA 310.1	· · · · · · · · · · · · · · · · · · ·	
Calcium	-	168	-	mg/L	1		EPA 130.2	08/31/98	l lj
Chloride		31		mg/L	1		EPA 300.0 (IC)	09/04/98	m
lardness, total		550	- n	ng/L as CaCO3	1		EPA 130.2	08/31/98	lj
lardness, ca	_	420		ng/L as CaCO3	1		EPA 130.2	08/31/98	lj
lardness, mg	_	130	-	ng/L as CaCO3	1		EPA 130.2	08/31/98	lj
Aagnesium	_	31	-	mg/L	1		EPA 130.2	08/31/98	lj
Residue, TSS	_		-	mg/L	5		EPA 160.2		
Residue, TDS		700	-	mg/L	10		EPA 160.1	08/31/98	lj.
Silica	_			mg/L	0.001		EPA 370.2		
Sulfate		313	-	mg/L	5		EPA 300.0 (IC)	09/04/98	_m
Sulfate			_	mg/L	5		EPA 375.4		
OC				mg/L	0.5		EPA 415.2		
oil & Grease	_		-	mg/L	2		EPA 1664		
						Report			
Netals Analys	sis		Results		Units	Limit	Method	Test Date	Analyst
	liss.		total		mg/L	0.075	ICP EPA 200.7		
	liss.		total _		mg/L	0.005	GFAA EPA 202.2		
	lis <u>s</u> .	12.868	total _		mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper d	liss.		total _		mg/L	0.005	ICP EPA 200.7		
Copper d	liss.		total _		mg/L	0.002	GFAA EPA 220.2		
on d	liss.	0.029	total		mg/L	0.020	ICP EPA 200.7	09/16/98	sd
on d	liss.		total		mg/L	0.010	GFAA EPA 236.2		
langanese d	iss.	2.020	total		mg/L	0.005	ICP EPA 200.7	09/16/98	
lickeł d	liss.	0.007	total		.mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
lickel d	liss.		total		mg/L	0.020	ICP EPA 200.7		
						0.050		00/16/09	0.4

mg/L

mg/L

mg/L

mg/L

0.050

0.050 0.070

0.0005

ICP EPA 200.7 ICP EPA 200.7

ICP EPA 200.7

GFAA EPA 273.2

TSD 000314

09/16/98

09/16/98

sd

sd

Note: ND denotes result below detection limit

3.810

21.397

total

total

total

total

diss.

diss.

diss.

diss.

Potassium

Silica

Sodium

Sodium

Ç,

Ę

1

5

		ROUTINE				
Sample Description	Hutsonville Pow	ver Station			composite	\[\] \[\[\] \[\[\] \[\] \[\[\] \[\[\[\[
	GP - 20F				grab	
Lab ID#	W98-582				·	
Sample Date	08/28/98	Time Sampled		Sampler ID		
Report Date	09/16/98	-				
Approved by	SD	-			Check if	Entered
Results to:	John Romang	Jacque Bush				Lineled
Inorganic Analys	sis		Report			
U	Results	Units	Limit	Method	Test Date/	Analy
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	1066	umho	1	EPA 120.1	08/31/98	ij
Alkalinity, P	8	mg/L as CaCO3	1	EPA 310.1	08/31/98	ij
Alkalinity,M	224	mg/L as CaCO3	1	EPA 310.1	08/31/98	ij
Bicarbonate HCO3		mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide		– mg/L	1	EPA 310.1		
Calcium	180	mg/L	1	EPA 130.2	08/31/98	lj.
Chloride	29	mg/L	1	EPA 300.0 (IC)	09/04/98	rm
Hardness, total	560	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, ca	420	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, mg	140	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Magnesium	34	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS		mg/L_	5	EPA 160.2		
Residue, TDS	848	mg/L	10 .	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	302	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
		-		FR		

Metals Ana	alvsis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss			mg/L	0.005	GFAA EPA 202.2		
	_		total				00// 0/00	
Boron	diss	13.248	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	0.031	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	2.006	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.007	total	-mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	4.609	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L_	0.050	ICP EPA 200.7		
Sodium	diss.	25.810	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

mg/L

mg/L

0.5

2

EPA 415.2

EPA 1664

Note: ND denotes result below detection limit

}

TOC

1

Oil & Grease

DOUTING

Sample Description	Hutsonville Pow	ver Station		composite
	GP - 21			grab
Lab ID#		·····		
Sample Date	08/28/98	- Time Sampled	Sampler ID	
Report Date	09/16/98		· _	
Approved by	SD			Check if Entered
Results to:	John Romang	Jacque Bush		

Inorganic Analysis

Ŧ.

Ī

;

Ŀ

•.'

Inorganic Ar	nalysis		Report			
	Results	Units	Limit	Method	Test Date/	Analyst
pH li	ab	units	0.1	EPA 150.1		
Sp Conductivity	lab 1913	umho	1	EPA 120.1	08/31/98	lj
Alkalinity, P	12	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj :
Alkalinity,M	228	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HC	03	mg/L	1	EPA 310.1		
Carbonate		mg/L	1	EPA 310.1		
Hydroxide		mg/L	1	EPA 310.1		
Calcium	356	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	27	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	1190	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness, ca	890	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, mg	300	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj l
Magnesium	72	mg/L	1	EPA 130.2	08/31/98	lj
Residue, TSS	•	mg/L	5	EPA 160.2		
Residue, TDS	1754	mg/L	10	EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	771	mg/L	5	EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
roc		mg/L	0.5	EPA 415.2		
Oil & Grease		mg/L	2	EPA 1664		

					Report	.:		
Metals Ana	alysis		Results	Units	Limit	Method	Test Date	Analyst
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	13.910	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total		0.005	ICP EPA 200.7		
Copper	diss.	•	total	mg/L	0.002	GFAA EPA 220.2		
iron	diss.	0.085	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
· Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Mangariese	diss.	5.397	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.007	total	-mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	0.836	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	31.620	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sơ
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

Note: ND denotes result below detection limit

.

Sample Description	Hutsonville Po	ROUTINE ver Station	composite
	GP - 23		grab
Lab ID#	W98-584	······································	
Sample Date	08/28/98	Time Sampled	Sampler ID
Report Date	09/16/98		
Approved by	SD		Check if Entered
Results to:	John Romang	Jacque Bush	

Inorganic Analysis

.....

ī

T

E J.

Ĺ,

Inorganic Analysis		•	Report				
	-	Results	Units	Limit	Method	Test Date/	Analyst
pH	lab		units	0.1	EPA 150.1		
Sp Condu	ctivity lab	2330	umho	1	EPA 120.1	08/31/98	lj
Alkalinity,	P -	ND	mg/L as CaCO3	1	EPA 310.1	08/31/98	ij
Alkalinity,	- 10	292	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbona	te HCO3	••	mg/L	1	EPA 310.1		
Carbonate	• -		mg/L	1	EPA 310.1		
Hydroxide	-		mg/L	1	EPA 310.1		
Calcium		440	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	-	23	mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness,	total	1440	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness,	ca ~	1110	mg/L as CaCO3	1	EPA 130.2	08/31/98	lj
Hardness,	mg -	330	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Magnesiur	ກ້ -	79	mg/L	1	EPA 130.2	08/31/98	ij
Residue, 1	rss –		mg/L	5	EPA 160.2		
Residue, 1	ros -	2210	mg/L	10	EPA 160.1	08/31/98	ij
Silica	-		mg/L	0.001	EPA 370.2		
Sulfate	-	927	mg/L	5.	EPA 300.0 (IC)	09/04/98	ភា
Sulfate			mg/L	5	EPA 375.4		
тос	-		mg/L	0.5	EPA 415.2		
Oil & Grea	se –		mg/L	2	EPA 1664		

Metals Ana	lysis		Results	Units	Limit	Method	Test Date	Analys
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	30.207	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	0.402	total	mg/L	0.020	ICP EPA 200.7	09/16/98	sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	2.680	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	ND	total	-mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	19.898	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sđ
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	58.502	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total		0.0005	GFAA EPA 273.2		

Depart

Note: ND denotes result below detection limit

Sample Description		Hutsonville Power Station						composite	
		LP - 1						grab	
Lab ID#		W98-585	- <u> </u>						
			_	Time Complet			Conceller ID		
Sample Date		08/28/98	-	Time Sampled			Sampler ID		
Report Date		09/16/98							
Approved by		SD	- .	- .				Check if	Entered
Results to:		John Romang	Jacque	Bush					
Inorganic .	Analys	is			Report				
		Results		Units	Limit		Method	Test Date/	Analys
pН	lab			units	0.1		EPA 150.1		
Sp Conductiv	ity lab	1955	_	umho	1		EPA 120.1	08/31/98	ij
Alkalinity, P		116	_	mg/L as CaCO3	1		EPA 310.1	08/31/98	ij
Alkalinity,M		136	_	mg/L as CaCO3	1 '		EPA 310.1	08/31/98	łj
Bicarbonate H	-ICO3		-	mg/L	1		EPA 310.1		
Carbonate				mg/L	1		EPA 310.1		
Hydroxide			_	mg/L	1		EPA 310.1		
Calcium		384		mg/L	1		EPA 130.2	08/31/98	lj.
Chloride		42		mg/L	1		EPA 300.0 (IC)	09/04/98	m
Hardness, tota	al	990	_	mg/L as CaCO3	1		EPA 130.2	08/31/98	lj
Hardness, ca		960	-	mg/L as CaCO3	1		EPA 130.2	08/31/98	lj
Hardness, mg	1	30		mg/L as CaCO3	1.		EPA 130.2	08/31/98	ij
Magnesium		7		mg/L	1		EPA 130.2	08/31/98	ij
Residue, TSS	;		_	mg/L	5		EPA 160.2		
Residue, TDS		1832	_	mg/L	10		EPA 160.1	08/31/98	ij
Silica			_	mg/L	0.001		EPA 370.2		
Sulfate		792	-	mg/L	5		EPA 300.0 (IC)	09/04/98	m
Sulfate			_	mg/L	5		EPA 375.4		
TOC			_	mg/L	0.5		EPA 415.2		
Oil & Grease			-	mg/L	2		EPA 1664		
						Report			
Metals Ana	alysis		Results		Units	Limit	Method	Test Date	Analys
Numinum	diss.		total		mg/L	0.075	ICP EPA 200.7		
Numinum	diss.		total		mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	27.876	total		mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total		mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total		mg/L	0.002	GFAA EPA 220.2		
ron	diss.	ND	total		mg/L	0.020	ICP EPA 200.7	09/16/98	sd
ron	diss.		total		mg/L	0.010	GFAA EPA 236.2		
Manganese	diss.	0.006	total		mg/L	0.005	ICP EPA 200.7	09/16/98	sd
Nickel	diss.	0.005	total		·mg/L	0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total		mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	85.718	total		mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total		mg/L	0.050	ICP EPA 200.7		
	diss.	31.442	total		mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium									

WATER ANALYSIS REPORT CIPS Central Laboratory

Sample Description	Hutsonville Pow			·	come site	·
	LP - 2				composite grab	
Lab ID#	W98-586				·····	
Sample Date	08/28/98	Time Sampled		Samplas ID		
Report Date	09/16/98	- Time Sampleu	·	Sampler ID		
Approved by	SD	-				
Results to:	John Romang	Jacque Bush			Check if	Entered
results to.	John Komang					
Inorganic Analys	sis		Report			
.	Results	Units	Limit	Method	Test Date/	Analys
pH lab		units	0.1	EPA 150.1		
Sp Conductivity lab	2330	- umho	1	EPA 120.1	08/31/98	ij
Alkalinity, P	120	mg/L as CaCO3	1	EPA 310.1	08/31/98	
Alkalinity,M	164	mg/L as CaCO3	1	EPA 310.1	08/31/98	lj
Bicarbonate HCO3	•	mg/L	1	EPA 310.1		
Carbonate	· · · · · · · · · · · · · · · · · · ·	- mg/L	1	EPA 310.1		
Hydroxide		- mg/L	1	EPA 310.1		
Calcium	552	mg/L	1	EPA 130.2	08/31/98	ij
Chloride	32	- mg/L	1	EPA 300.0 (IC)	09/04/98	m
Hardness, total	1450	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, ca	1380	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Hardness, mg	70	mg/L as CaCO3	1	EPA 130.2	08/31/98	ij
Magnesium	17	mg/L	1	EPA 130.2	08/31/98	ij
Residue, TSS	•	mg/L	5	EPA 160.2		
Residue, TDS	2378	mg/L	10	· EPA 160.1	08/31/98	ij
Silica		mg/L	0.001	EPA 370.2		
Sulfate	990	mg/L	5.	EPA 300.0 (IC)	09/04/98	m
Sulfate		mg/L	5	EPA 375.4		
TOC		mg/L	0.5	EPA 415.2		

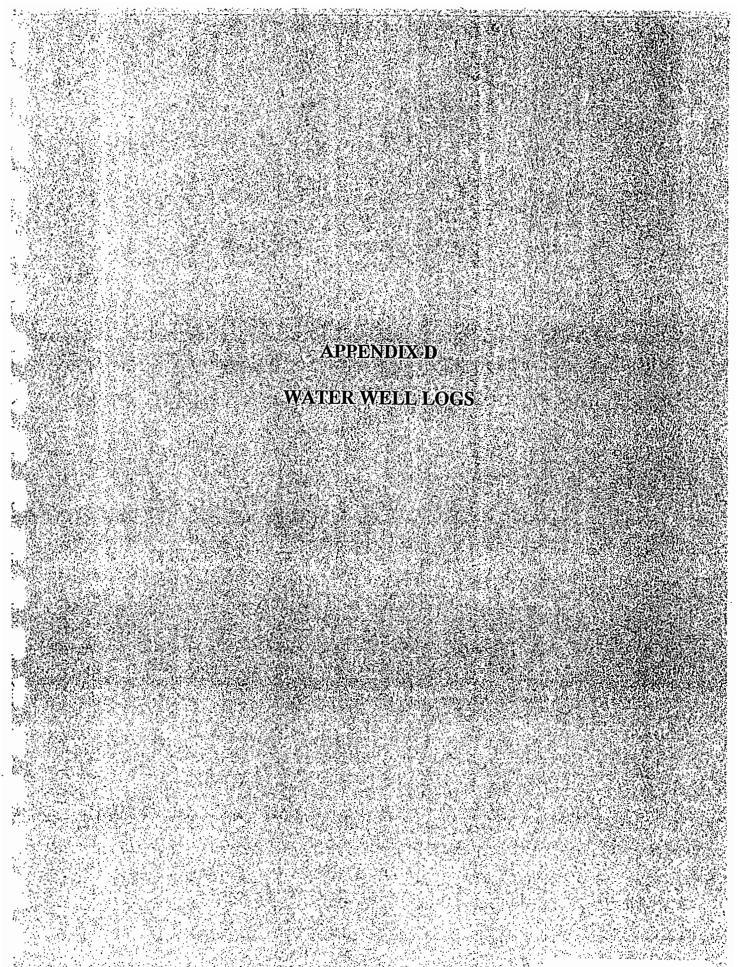
Metals Ana	ilysis		Results	Units	Limit	Method	Test Date	Analysi
Aluminum	diss.		total	mg/L	0.075	ICP EPA 200.7		
Aluminum	diss.		total	mg/L	0.005	GFAA EPA 202.2		
Boron	diss.	52.896	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Copper	diss.		total	mg/L	0.005	ICP EPA 200.7		
Copper	diss.		total	mg/L	0.002	GFAA EPA 220.2		
Iron	diss.	ND	total	mg/L	0.020	ICP EPA 200.7	09/16/98	. sd
Iron	diss.		total	mg/L	0.010	GFAA EPA 236.2		
Manganes e	diss.	0.014	total	mg/L	0.005	ICP EPA 200.7	09/16/98	sđ
Nickel	diss.	0.007	total		0.005	GFAA EPA 243.2	9/16/98	sd
Nickel	diss.		total	mg/L	0.020	ICP EPA 200.7		
Potassium	diss.	45.640	total	mg/L	0.050	ICP EPA 200.7	09/16/98	sd
Silica	diss.		total	mg/L	0.050	ICP EPA 200.7		
Sodium	diss.	16.078	total	mg/L	0.070	ICP EPA 200.7	09/16/98	sd
Sodium	diss.		total	mg/L	0.0005	GFAA EPA 273.2		

mg/L

2

EPA 1664

Note: ND denotes result below detection limit


|: |:

ģ

Ī

į.

Oil & Grease

TSD 000321 39 ÷. . . 07 . • Ľ, ŧt. 4 ÷ min. ť Ť Depth of Bottom Rge_11 V 1 96 2 \mathbf{n} ゃ 5 _ m m う 'n ۲. ζ Twp \mathcal{M} Sec. .4 Bottom set at [Show location in Section Plat] Ŷ Well No. 4 1000 Thickm 5 M N Теаг_ Ċ. N Temperature \$ g inch. Static level from surf. rom 0 t ŝ. 9183 County Raw ിര continue on back if necessary] LOG OF WATER WELL Screen TOT per min. COUNTY No. <u>,</u> the for Ę. Ę. -Elev. len Formations passed through . . . -gal. Length_ 5 . Cased with le 1/4/inch ela 1 al 200 : n Ġ. Township name On a well hrs. Duro 5 (5) ç I aho Size hole below casing- \sim inch ÷ 100 Diam. Description of location au ł 4 ý 4 Property owner. Ċ, Tested capacity. Water lowered Length of test. Â Finished in Signed O and Drilled by. Ľ Slot **;*** . :. · . . 1 . . ۰. ч. а, · 7 . st. A., · · · · · ٤, 1562 . Thick- Depth of ness Bottom ÷ N ť Ť m 30, ť D E. ų. ł Ś 5 ſ N 5 0 Ċ Rge/LW -Well No. 0 ITENA-6 30 Ę Year_ Sec. N 2 in Section Plat] n S Ū, qa, ģ per min. Temperature. 2 from 0 to inch. Static level from surf. Bottom set COUNTY No. 9.188 LOG OF WATER WELL [Bhow location La County Class Continue on back if necessary] min. Screen from 0 fn. in Indov. Ħ Formations passed through Party Elev. Ę gal. Length : ١ CRAMFORD' Property owner Russ L' Township name UN GALINAID 3 hra à Qer Un ٩ Ч Ч inch. ð Size hole below casing-Diam. Description of location. ka Vy \$ J J ÷ Tested capacity. Water lowered Drilled by__ Length of test. Lan Finished in Dam Cased with and 2 Sha aha Signed . Slot

			· · · · · · · · · · · · · · · · · · ·					 										•		0322			
	Battom	20	C 42		c 6		90 87.													TSD 000322			
	18 1	00	25) 	7 7	6	•				sel				arcer	in vel			near	•			
(881150M5-69)	Thiskness										ess Sto	E C C	- 30'	poin	point 3 hour	Hole			Hutsonville			. ·	и. 29913 Se
ره المعادمة المحافظة (١٤ من المحافظة (١٤ من المحافظة عن المحافظة عن المحافظة عن المحافظة (١٤ من المحافظة محافظة ال	Permit # 47367	Brown clay, very soft Grav clay very soft	e sand and 0'(water b	el with bo rine)	Medium to fine sand very loose (water bearing)	Bedrock at	Total Depth Plugged back	cord: 52" 0 -	42" 30 - 87.5' Carino monord: 0.2" +1 - 201	26" +1 to 57.5"	: 30' of 26" Layne Sta	pack between 26" and 42	o = o/ 42. casing cemented from 5 Chief aquifer: sand and gravel from 25	_	tumping revel: 24.29 Delow measuring pumping at approximately 825 gpm for	point for above meas	nousing, 2' above ground level	₿ 60350	*App. 1 mile north of Village of Hutson Wabash River		OMPANY Layne-Western Company	C.I.P.SHutsonville Unit	ATE DAILLED MAY 25, 1976 COUNTY NG.2 UTHORITY SLALE WALET SULYCEY LEVATION 4400'T.M. Jeation 350'S line,1630'E line, SE Jumity CRAWFORD
	·····	щ с	, ,			н ; ;					S		0	ΖP	•	X		S	*	Z		Υ.	
	CORD		045			E SWC SE SW SE				ţ; 	826		Bottom	5	22	26	88						-11W
	VELL REC	Well No. #4	116 11 No. 102-2045 Ma/24/81			N 150'	To (ft) 57	30]	0	22 ft.when pumping at		Th i ckness	5	17	4	62			•			17-08N-1
	GEOLOGICAL AND WATER SURVEYS WELL RECOR	10. Property owner <u>Central IL Public Serv.Co.</u> W	Address <u>Mutsonville Power Generator St Mutsonville IL</u> Driller <u>Ruester, John T. License No.</u> 11 Dommit U. 100051	13. Co	at depth <u>25 to 97 ft.</u> Sec. 17 14. Screen: Diam. <u>26 in.</u> Tup. <u>8</u> Length: <u>30 ft. Slot 5 Ree. 11</u>	15. Casing and Liner Pipe 350	iam. (in.) Kind and Weight From (f) 26 .375 WALL 0	42 .375 WALL -22		16. Size hole below casing: <u>42</u> in. 17. Static level <u>15</u> ft. below casing top which is	above ground level. Pumping level <u>22</u> ft.when	gpm for 5 hours.	18. Formations passed through	cinders, sand & clay	med to soft clay	soft gray clay	f-med s, gvl & bld						Crawford 12-033- <u>33867</u> -00

		CORD			ft. at30	Bot tom 2	tī. X	2 00	ñ			TSD 000323	MLL-N80-81
ĵ		WELL RECORD	Vell No. 41 se No. 092-6477 11/08/96 <u>11/08/96</u> 11/1 11/1 11/1 11/1 11/1	10 (ft) 27	2 Buliqinuq	Thickness 2	= "	7 7	-			TSI	18-08
			License Date - Sec. 1 TWP - Elev.	From (ft)	in. ng top which ft. wh	•		gravel					
•		WATER SI	elter. Brad 500th Hutsonvi 96 1n. 1n. 1	Veight	below casi ping level	through	Zer	d with small					12-03 <u>3-36385</u>
		AL AND	Lingaf lorth 1 1m 133-24- 133-24- 5 to to to to to to to to to to to to to	kind and Veight PVC SDR 21		Formations passed through topsoil	graveily stabilizer	targe gravet coarse brown sand with	hard brown clay			Dr. Control of the second s	
i		GEOLOGICAL AND WATER SURVEYS	10. Property owner Address <u>19961</u>) Driller <u>Hacker</u> 11. Permit No. (12. Water from <u>S</u> 14. Screen: Diam. (Length: <u>5</u> 15. Casing and Lin	Dfam. (in.) 6	16. Size hole bel 17. Static level above ground gpm for	18. Formation topsoil	grav	COBLSE	hard				
		•.								· · ·	·		
	Č.	Bottom	55 <i>522283</i> 5										
	81)27-0	Top		. '									
	(88911—5011—2-81)27 (1)21	Thickness	<u>6884688</u>		- <u>ë</u>							5493	
	(188841—5011—2- CARVEY, URBANA		•	dnute	3' Bottom							ко. Сойнту на. 64,93	÷)
				suriace 10' gallons per minute									- 14 - -
	DIS GEOL		ğ	m suria 2 gallo	ter 6"		-			۰.		Rollie	
	ILLINO		lay ummy clay andsand ray hardpan ellow hardpan ray shale ine ark shale	tatic level irom suriace ested capacity 2 gallons	hot torch diameter 6" length set at 37'							aton son,	ne sw nw
		ŀ	lay ummy clay ray hardp ellow har ray shale ime ark shale	ested	bot t set							ираич V. Е ки John те ряцеед951	FHORITY EVATION SATION

	(1) 「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」			341- 341- 341-							
		(32814 60M9-65)	69-6-	Å			445	(3732920M5-56)	5-60)		
Pege 1	ILLINOIS GEOLOGICAL SURVEY,	URBANA		·	Pie	ILLINOIS	S GEOLOGICAL SURVEY,	URBANA		Ī	
	Strits .	Thickness	Top	Bottom			Strata	Thicknass	Top	Bottom	
Soil & Sand & Sand & Sand & Coarse	& gravel & gravel with clay & gravel with water with little gravel (water) se gravel and some sand (wa	ter	0.0000 00000 00000		0 Φ Ψ Η Ο Η Ο Φ Ο Ω Η Η Ο Η Ο Η Ο Ο Ο Ο Η Η Ο Η Ο Η Ο Η Ο Ο Ο Ο Η Η Ο Η Ο	1112 1112	d sand d weter nen solid oft siste solid slate solid	ر : ; ; ; ق ت	000-0-1000 000-0-1000		
Static Tested drawd	atic level from surface: 23', sted capacity: 45 gallons per drawdown.	minute,		: ·	ዳ እስ እስተ 6 እት እስ እስተ እ	20110 10110 10110 10110 10110 10110		•	רי טערטיע געיטיטיט	0000CE	
					aj D	sed with 7"	used iron nipe fro	O C F	7 '8'	4 -	
				\$2017#P 1 #13	ις Ε. ες	etic level sted caraci orage of wa	from surface: 11'. ty: 90 gallons per ter in well: 250 ga	hour.		n an ghragan 17 Annais. 1111 - AVE - Channel Annais.	
	• • •		·	in a care and a second s							
O ENVELOPE	E			i da cata	X	NO ENVELOPE			TSD (TSD 000324	
MPAHY RM TZ DRILED FHORITY Svation Sation Unty	Virgil Eaton & Son Musgrave, William L.Mo. Dec. 1954 Virgil Eatory & Gaourr Mo. Virgil Eatory & Gaourr Mo. CRAWFORD CRAWFORD	1838				NWY VITEIL E Newlin, DBULEDMErch 19 HHY VITEIL E TION 1/2 Of ION 1/2 Of NON 1/2 Of	aton and Son Morgan No. 57 countr No. aton and Soh NW SW	1424			

. . • • -..... • • TSD 000325 f. σ 14 Bottom **18-08N-11W** GEOLOGICAL AND WATER SURVEYS WELL RECORD No. 102-2003 10/27/86 1 at Thickness **Crauford** Static level _____ft. below casing top which is ______ above ground level. Pumping level _____ft. when pumping 0 ŝ Well No. To (ft) 5 14 Sec. <u>18</u> Tup. <u>8 N</u> Rge. <u>11 U</u> Elev. SE SE SU License No. . 13. County ((ft) :. 0 2 12-033-34185-00 From sand & gravel ġ 1 surface 10. Property owner <u>Stephens</u>, Gilbert Address <u>R.R. #1 Hutsonville 1L</u> Driller <u>Hacker, Delbert</u> Kind and Veight Formations passed through at depth 10 to 14 ft. 14. Screen: Diam. 6 in. Length: 4 ft. Slot 01 12. Water from <u>sand & gravel</u> 16. Size hole below casing: • 11. Permit No. 127747 Liner Pipe SLOT PIPE _hours. PLAST IC . 17. Static level Cesing and 15. Casing and Diam. (in.) gpm for Crawford ø v 18. . . : : `. : 1 У М 19 62 H Tear / VC C M ٢ ろ Ť ţ. ŧ min. Twp. S.M ٦ Rge/1 M כ ſ . 2 5 M Sec. ľ . n Bet at Section Plat] Well No. WII-8N-8E ••• 12 1X [N N M è • . 200 ł Inch. Static level from surf. presention 0 to —gal. per min. Temperature Bottom . . [Show location in COUNTY No. 9190 Finished in Cyle week of and at at 3 c Milly County Craig . LOG OF WATER WELL . min. Screen from Index: ler <u>, </u> ġ 0 Elev Formations passed through ŝ 2 C Length 1:21. Copy for Illinois State Geological Survey Cased with UN d inch we will Township name CA anufur O 2 ling ----뷖 Le. hrs. acina ٠. 0 6 , Paul 6 -inch Size hole below casing. Property owner Late Description of location. ナ + Diam. 9 ; Water lowered to. Tested capacity_ Vinv ~ Length of test. And A $\overline{}$ Ś lin grane Drilled by-Signed Bnd 17 Ð. Slot ۰. • :• 0

A 1

Ξ.

1

÷

			· · · · ·																				0326	
	1774 (49.47) (19.47) (19.47) (19.47)	RECORD		003			-				je J			Bottom	7	18	20	07					TSD 000326	WL1-W
		WELL REC	Well No.	No. 102-2003 10/27/86	Crawford			1~1	61		<u>s</u>	ft. ⊌hen pumpfng a		Thickness	. 2	11	2	20				•	-	19-08N-11W
		SURVEYS			1 1-	Raet.1	'n	From (ft)	15	 -	∵fn. w casîng top which îs			46	surface	clay	sand	gray dirt						12-033- <u>34186</u> -00
	tana. Nana ta	AND WATER	Property owner <u>Earleywine, Mike</u> Address R.R. #1 Hutsonville 1L	r, Delbert 127748	sand 20 ft.	ft. slot	her Pipe	Kind and Veight	PLASTIC .		ow casing: ft. below	level. Pumping level. hours.		s passed through	8	0	<i>в</i> .	6						12-033
		GEOLOGICAL	10. Property owner Address R.R.	Driller <u>Hacker, Delbert</u> 11. Permit No. 127748	12. Water from	14. Screen: Diam. 6 1 Length: 25 ft. slot	15. Casing and Liner Pipe		0 9		16. Size hole below casing 17. Static levelft.	above ground . gpm for		18. Formations										Crawford
•																								
		 														ۍ د د . ۲۰			• , •	. :				
			1 - 1 - E	<u>kent</u>				BHOT ATION IN TON BLAT	_	U W LINE,			BOTTOM	2	12	6	23		27'6"	36				
	ILL RECORD	ell No.	2-60	12	Ħ	11		LOCATION P	500' S 1	NW (nermit)			THICKNESS DEPTH OF BOTTOM		2/	: :	<u>~</u>	1	276"	36				10 01
	S WELL RECO	いいんとぞう Well No.	2-60	12	Ħ	Res. 1/22/		From (FL) To (FL) LOCATION	7 5 7 500' S 1	NW (nermet)	in. top which is		THICKNESS DEPT		C141 12	61 1070	N 23	22	0 KAVEC 27'6"	< # N			i date albare	······)
	S WELL RECO	IET CARL TINGLEY Well No.	1-1-1-	Permit No. <u>54476</u> Date <u>11-76</u> Water from <u>5470 9-6 EdUE</u> C13. County <u>Crawler-eX</u>	$\frac{7}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$	11		From (FL) To (FL) LOCATION	5 - 7 C 500 - S 1	NW (nexm(t)	in. top which is	gpm for hours.	DEPT BOT	د ح	2/	61 1070	ph N 23	2 2 2 4 1	+ BRAVEL	2 6 6 4 1		(CONTINUE ON SEPARATE SHEET IF NECESSARY)	and Reveredonse	6 <i>30/59.</i>

÷ - 2.4 ., Bottom 8 50 68 68 94 95 TSD 000327 95 (36941-303-2-67)27-0 . . 95 튭 ILLINOIS GEOLOGICAL SURVEY, URBANA Meehts • Thickness 29 I3 8 16 2 26 April 27, 1971 Water temperature: 560F, through 30 gallon Ę ine 6496 : of Gas Volume: In 2 minutes= 2 1/8" of gas mason jar under water with 3 gallons of 1800' S line, 800' W line of SW REPORT OF GAS FLOW MEASUREMENT by W.F. tank in basement and 100' of buried NO. - 95 - 95 water per minute passing through COUNTY Static level: 11' from surface of log Finished in sand at 94 - 95' Casing: 6" iron pipe from O slotted from 94 - 95' Tësted capacity: 5 g.p.m. Barometer reading: 29.34" Virgil Eaton Griffith, Walter یہ۔ 24 See map of area on back NO ENVELOPE : : clay Gas will burn Dark gummy hardpan Company 492' T.M. *200' east of road Dark gum hardpan Soil and yellow Soft silty mud Sand and water Solid hardpan 1950 Sand and gas S.S. # 21760 Total Depth Limestone ATE DRILLED NOTE: THORITY Pege 1 KOTTON . EVATION OMPANY ICATION :: :: -. .. The Sam I Tear Thick- Depth of ness Bottom ŧ i i i ŧ Ē 45 Sec.19 ł <u>¥</u>3 55 ž Ś 5 0.5 Well No. é [Show location in Section Plat] 5 5 C 4 ଦ୍ୟ ġ 5 Bottom set at ĥ from 0 to. gal. per min. Temperature yo v inch. Static level from surf. COUNTY NO. 6. 4.97 -Var (Continue on back if necessary] ... min. Screen WELI ч ч County G OF WATER Formations passed through Elev. . Length 110d by Ol Con Tom Oler 1 Ol **1** Cownship name Kertamuar Le いた hrs k 님머 lize hole below casing... Ч Ч inished in with the ***** Description of location____ ! ^VS.S. # 19287 Diam Vater lowered to. 24 Cloner ested capacity_ perty owner. ength of test gran Ð prot have and. ased with Bnd 2002 Signed 3lot. 0 :

	•		
	ORD	86665540 m 1, t. c. Nu	TSD 000328
	WELL RECORD	Vell No. Mail 12/08/78 12/08/78 12/08/78 12/08/78 12/08/78 12/08/78 12/08/78 12/08/78 11 U 12/08/78 12/08/78 12/08/78 11 U 10 12 14 13 1 15 1 16 10 17 16 18 1 10 10 11 10 12 15 136 1	TSD 000 19-08N-11W
	WATER SURVEYS	wrer <u>Storkman, Leddie</u> <u>Hutchsonville IL</u> <u>tress, John B</u> <u>tress, John B</u> <u>tress, John B</u> <u>tress, John B</u> <u>sand</u> <u>13. county</u> <u>66 to 78</u> ft. Sec. <u>1</u> <u>rup.</u> <u>am.</u> <u>ft. Slot</u> <u>13. county</u> <u>gec.</u> <u>am.</u> <u>ft. Slot</u> <u>13. county</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u>rup.</u> <u></u>	12-033- <u>33868</u> -00
	GEOLOGICAL AND	10. Property owner 11. Permit No. 11. Permit No. 11. Permit No. 12. Water from 13. Vater from 14. Screen: Diam. 15. Casing and Lin 16. Size hole belo 17. Static level 18. Formations	Crawford
	Bottom	日 	
• • • • • • • • • • • • • • • • • • •	Top -	H L C C L C C C C C C C C C C C C C C C	с Г
(37329—20M—5-66) (37329—20M—5-66) (37828—20M—5-66)	Thickness	ter o filly o fillons.	2417
ELLINOIS GEOLOGICAL SUR	81मध	d clay herdnan, solia rdpan, solia solid ectal mud, soft rdpan, solid ray sand, good su nd end gray sand, good su nd end grevel soft fine more w af end grevel soft red from o to 74' al peck method used. level from sunface 14 canactty 270 gellons r cof water in vell 200 r	Virgil Eaton & Son Musgrave, Hershel No. Februery 1954 countrie. Virgil Eaton & Son NE NE NW
		Contraction Crastic Contractic Contraction Crastic Contractic Contraction Crastic Contractic Contractic Contractic Contractic)MPANY IRM ITE DRILLED THORITY EVATION ICATION ICATION

 : 			· · · · · · · · · · · · · · · · · · ·											,		
ORD	 			· .		t 8		Bottom	m .	20	8	66			TSD 000329	MT
VELL RECO	ell No. <u>#1</u> 1545 P# <u>301186</u> No. 092-6477	1 뛴 필니그	- I - I	To (ft) 32		1 ft ping at <u>1000</u>		th i ckness	m	12	5 13				Ë	20-8N-11W
SURVEYS WELL RECORD	Vell No. ISUS P#	Date 01/ County <u>Crai</u> Sec. 20 1 vo. 8	····	From (ft) 0		p which is 0_ft.when pumping					ed gravel					<u>67</u> -00
	Duane IN le, IL		.8	Kind and Height 24 40 PVC		casing:in. <u>11</u> ft. below casing top which is el. Pumping levelft.when p		through			gray clay coarse gray gand with fine-med			-		12-033- <u>36667</u> -00
GEOLOGICAL AND WATER	Property owner <u>Wampler, Duene</u> Address <u>R.R. #1 Sullivan JN</u> Well address <u>Nutsonville, 1</u> Lot <u>Subd</u> Driller <u>Hacker, Tim</u>	<u>110 & 91</u> 110 & 91 12	Length: 3 ft. Slot .06			le lor	hours.	Formations passed th	topsoi l	silty dark clay	gray clay coarse gray sa	gray clay at				
GEOLOC	Property owner Address <u>R.R. #</u> Vell address Lot Driller <u>Hacker</u>	Permit No. Water from at depth Screen: Dia	Length:	Diam. (in.) 12		Size hole be Static level above ground	gpm for	Formati		\$		D 			Irrigation	Crawford
• • •			1		ی اور					4.4 4.4 1.5						
CORD	229		N N N		t		Bottom	18	25	45	8					WLL-I
LL REC	ell No. <u>#1</u> No. <u>102-1229</u> 07/16/79 Crewford		00' E SI 81	ŢŢ	-	ping at	ness	18	~	ត្ត ;	<u>, i</u> s					19-08N-1
WE.		2 Z	1001 10 (ft) 81		,		. Thickness			1						5
SURVEYS WE	License Date 13. County 1	Sec. <u>19</u> 14p. <u>8 N</u> Rge. <u>11 U</u> E lev.	200' N 300' E SWC NE From (ft) To (ft) -1 81		_in. ing top which is	ft. when	Thick		vel							
D WATER SURVEYS WE	License Date 13. County 1	<u> 1</u> ,4.	d Veight From (ft -1		ing:in. Pro helow cesting for which is	- 		clay	vel	& sand						
GEOLOGICAL AND WATER SURVEYS WELL RECORI	ner <u>Vandevender, Leroy</u> V utsonville 1L tmess, John B License 87751 Date Date gravel 13. County	81_ft.	15. Casing and Liner Pipe 200' N 3(Diam. (in.) Kind and Weight From (ft) To (7 BLACK 20# -1 4		16. Size hole belby casing:in. 17 staric level 35.44 helou resind ton uhich is	ivel. Pumping level hours.	Formations passed through Thick		vel	& sand						Crawford 12-033- <u>33869</u> -00 19

.

	 												1330	
	ORD	260	е с 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3		ft.	Bottom	5	8	2				TSD 000330	MTT-I
	WELL RECORD	Well No#4 • No102.3092 • 06/01/87 • Crewford	8 N 8 N 11 U 12 U 5557 H 1 To (ft)	61	which is <u>5</u> ft.when pumping at	Thickness	S	25	43		· · ·		J	20-08N-11W
	SURVEYS	License Date 3. County Sec. 2	Rae Rae Ele From (ft	#/FT -5	fn. ng top 35	through	fine dark brown sand	۳ ا	fine/med sand & gvl					12-033- <u>34405</u> -00
	AL AND WATER	sonvi Hutso Steve 17 ial 61		STEEL 40.48#/FT	흘 느 ~ ~	passed								12-0
	GEOLOGICAL	 Property of Address <u>Ci</u> Driller <u>Pe</u> Permit No. Water from at depth 	14. Screen: Diam. 10 Length: 15 ft. Slot 15. Casing and Liner Pipe Diam. (in.) Kind an	2	16. Size hole bel 17. Static level above ground 9pm for	18. Formations								Crawford
ï.												•		
	÷.													
	ORD					Bottom	0		45	64				MLL-1
	ELL RECORD	ell No. 092-6402 02/10/89 Crawford	NN NN	2	pumping at	Thickness Bottom		1 1	•	19 64				20-08N-11W
	GEOLOGICAL AND WATER SURVEYS WELL RECORD	aeret R. We sonville JL License N Date 13. County 20. 20.	Z Тир. <u>8 И</u> Rge. <u>11 И</u> Elev. NV NU N Ight From (ft) To (PVC WC SCH 80 2 64	<pre>16. Size hole below casing:fn. 17. Static levelft. below casing top which isft. above ground level. Pumping levelft. when pumping at gpm forhours.</pre>	-		- :						12-033- <u>35196</u> -00 20-08N-11W